
Conditional Channel Gated Networks for Task-Aware Continual Learning
Supplementary Material

Davide Abati1∗ Jakub Tomczak2 Tijmen Blankevoort2 Simone Calderara1

Rita Cucchiara1 Babak Ehteshami Bejnordi2

1University of Modena and Reggio Emilia
2Qualcomm AI Research†

Qualcomm Technologies Netherlands B.V.
{name.surname}@unimore.it {jtomczak,tijmen,behtesha}@qti.qualcomm.com

1. Training details and hyperparameters
In this section we report training details and hyperparam-
eters used for the optimization of our model. As already
specified in Sec. 4.1 of the main paper, all models were
trained with Stochastic Gradient Descent with momentum.
Gradient clipping was utilized, ensuring the gradient mag-
nitude to be lower than a predetermined threshold. More-
over, we employed a scheduler dividing the learning rate by
∗Research conducted during an internship at Qualcomm Technologies

Netherlands B.V.
†Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

Split MNIST Split SVHN

op
tim

batch size 256 256
learning rate 0.01 0.01
momentum 0.9 0.9
lr decay - [400, 600]
weight decay 5e− 4 5e− 4
epochs per task 400 800
grad. clip 1 1

ou
r λs 0.5 0.5

Lsparse patience 20 20

Split CIFAR-10 Imagenet-50

op
tim

batch size 64 64
learning rate 0.1 0.1
momentum 0.9 0.9
lr decay [100, 150] [100, 150]
weight decay 5e− 4 5e− 4
epochs per task 200 200
grad. clip 1 1

ou
r λs 1 1

Lsparse patience 10 0

Table 1: Hyperparameters table.

a factor of 10 at certain epochs. Such details can be found,
for each dataset, in Tab. 1, where we highlighted two sets of
hyperparameters:

• optim: general optimization choices that were kept
fixed both for our model and competing methods, in
order to ensure fairness.

• our: hyperparameters that only concern our model,
such as the weight of the sparsity loss and the num-
ber of epochs after which sparsity was introduced (pa-
tience).

2. WGAN details
This section illustrates architectures and training details for
the generative models employed in Sec. 4.4 of the main
paper. As stated in the manuscript, we rely on the frame-
work of Wasserstein GANs with Gradient Penalty (WGAN-
GP, [2]). The reader can find the specification of the archi-
tecture in Tab. 6. For every dataset, we trained the WGANs
for 2×105 total iterations, each of which was composed by
5 and 1 discriminator and generator updates respectively.
As for the optimization, we rely on Adam [3] with a learn-
ing rate of 10−4, fixing β1 = 0.5 and β2 = 0.9. The batch
size was set to 64. The weight for gradient penalty [2] was
set to 10. Inputs were normalized before being fed to the
discriminator. Specifically, for MNIST we normalize each
image into the range [0, 1], whilst for other datasets we map
inputs into the range [−1, 1].

2.1. On mixing real and fake images for rehearsal.

The common practice when adopting generative replay for
continual learning is to exploit a generative model to syn-
thesize examples for prior tasks {1, . . . , t − 1}, while uti-
lizing real examples as representative of the current task
t. In early experiments we followed this exact approach,
but it led to sub-optimal results. Indeed, the task classifier
consistently reached good discrimination capabilities dur-
ing training, yielding very poor performances at test time.

1



task 1 task t‐1… Task t

fake real

real/fake?

task twhich past task?

task 1 task t‐1… task t

real

real/fake?

task twhich past task?

fake real

real

TR
AI
N
IN
G

IN
FE
RE

N
CE

Task 1 Task t‐1… Task t

fake

which task?

Task 1 Task t‐1… Task t

real

which task?

(a) (b)

Figure 1: Illustration of (a) the degenerate behavior of the
task classifier when rehearsed with a mix of real and gen-
erated examples and (b) the proposed solution. See Sec 2.1
for details.

After an in-depth analysis, we conjectured that the task clas-
sifier, while being trained on a mixture of real and fake
examples, fell into the following very poor classification
logic (Fig. 1). It first discriminated between the nature of
the image (real/fake), learning to map real examples to task
t. Only for inputs deemed as fake, a further categorization
into tasks {1, . . . , t − 1} was carried out. Such a behav-
ior, perfectly legit during training, led to terrible test per-
formances. Indeed, during test only real examples are pre-
sented to the network, causing the task classifier to consis-
tently label them as coming from task t.

To overcome such an issue, we remove mixing of real and
fake examples during rehearsal, by presenting to the task
classifier fake examples also for the task t. In the incremen-
tal learning paradigm, this only requires to shift the training
of the WGAN generators from the end of a given task to its
beginning.

C = 500 C = 1000 C = 1500 C = 2000

M
N

IS
T

Full Replay 0.9861 0.9861 0.9861 0.9861
A-GEM [1] 0.1567 0.1892 0.1937 0.2115
iCaRL-rand [6] 0.8493 0.8455 0.8716 0.8728
iCaRL-mean [6] 0.8140 0.8443 0.8433 0.8426

ours 0.9401 0.9594 0.9608 0.9594

SV
H

N

Full Replay 0.9081 0.9081 0.9081 0.9081
A-GEM [1] 0.5680 0.5411 0.5933 0.5704
iCaRL-rand [6] 0.4972 0.5492 0.4788 0.5484
iCaRL-mean [6] 0.5626 0.5469 0.5252 0.5511

ours 0.6745 0.7399 0.7673 0.8102

Table 2: Numerical results for Fig. 4 in the main paper. Av-
erage accuracy for the episodic memory experiment, for dif-
ferent buffer sizes (C).

SVHN CIFAR-10
Acc. MB Acc. MB

ep
is

od
ic

Em1 0.6745 1.46 0.6991 1.46
Em2 0.7399 2.93 0.7540 2.93
Em3 0.7673 4.39 0.7573 4.39
Em4 0.8102 5.86 0.7746 5.86
Em5 0.8600 32.22 0.8132 32.22

ge
n. DGM [5] 0.7438 15.82 - -

Gm1 0.8341 33.00 0.7006 33.00

Table 3: Numerical values for the memory consumption ex-
periment represented in Fig. 5 of the main paper.

3. Quantitative results for figures
To foster future comparisons with our work, we report in
this section quantitative results that are represented in Fig. 4
and 5 of the main paper. Such quantities can be found in
Tab. 2 and 3 respectively.

4. Comparison w.r.t. conditional generators
To validate the beneficial effect of the employment of gen-
erated examples for the rehearsal of task prediction only, we
compare our model based on generative memory (Sec. 4.4
of the main paper) against a further baseline. To this end, we
still train a WGAN-GP for each task, but instead of training
unconditional models we train class-conditional ones, fol-
lowing the AC-GAN framework [4]. After training N con-
ditional generators, we train the backbone model by gen-
erating labeled examples in an i.i.d fashion. We refer to
this baseline as C-Gen, and report the final results in Tab. 4.
The results presented for Split SVHN and Split CIFAR-10,
illustrate that generative rehearsal at a task level, instead
of at a class level, is beneficial in both datasets. We be-
lieve our method behaves better for two reasons. First, our
model never updates classification heads guided by a loss
function computed on generated examples (i.e., potentially
poor in visual quality). Therefore, when the task label gets
predicted correctly, the classification accuracy is compara-
ble to the one achieved in a task-incremental setup. More-
over, given equivalent generator capacities, conditional gen-

class
conditioning

rehearsal
level SVHN CIFAR-10

C-Gen 3 class 0.7847 0.6384
ours 7 task 0.8341 0.7006

Table 4: Performance of our model based on generative
memory against a baseline comprising a class-conditional
generator for each task (C-Gen).



erative modeling may be more complex than unconditional
modeling, potentially resulting in higher degradation of
generated examples.

5. Confidence of task-incremental results
To validate the gap between our model’s performance with
respect to HAT (Tab. 1 in the main paper), we report the
confidence of such experiment by repeating it 5 times with
different random seeds. Results in Tab. 5 show that the mar-
gin between our proposal and HAT is slight, yet consistent.

MNIST SVHN CIFAR-10

HAT 0.997 ±4.00e−4 0.964 ±1.72e−3 0.964 ±1.20e−3
our 0.998 ±4.89e−4 0.974 ±4.00e−4 0.966 ±1.67e−3

Table 5: Task-IL results averaged across 5 runs.

References
[1] Arslan Chaudhry, MarcAurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In International Conference on Learning Representa-
tions, 2019. 2

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In Neural Information Processing Systems,
2017. 1

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2014. 1

[4] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional image synthesis with auxiliary classifier gans. In
International Conference on Machine Learning, 2017. 2

[5] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-
nichen, and Moin Nabi. Learning to remember: A synap-
tic plasticity driven framework for continual learning. In
IEEE International Conference on Computer Vision and Pat-
tern Recognition, 2019. 2

[6] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. icarl: Incremental classifier and
representation learning. In IEEE International Conference on
Computer Vision and Pattern Recognition, 2017. 2



Generator Discriminator

Split MNIST

Linear(128,4096)
ReLU

Reshape(256,4,4)
ConvTranspose2d(256,128,ks=(5,5))

ReLU
ConvTranspose2d(128, 64, ks=(5,5))

ReLU
ConvTranspose2d(64, 1, ks=(8,8), s=(2,2))

Sigmoid

Conv2d(1,64,ks=(5,5),s=(2, 2))
ReLU

Conv2d(64,128,ks=(5,5),s=(2, 2))
ReLU

Conv2d(64,128,ks=(5,5),s=(2,2))
ReLU
Flatten

Linear(4096,1)

Split SVHN

Linear(128,8192)
BatchNorm1d

ReLU
Reshape(512,4,4)

ConvTranspose2d(512,256,ks=(2,2))
BatchNorm2d

ReLU
ConvTranspose2d(256, 128, ks=(2,2))

BatchNorm2d
ReLU

ConvTranspose2d(128, 3, ks=(2,2), s=(2,2))
TanH

Conv2d(3,128,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(128,256,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(256,512,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Flatten
Linear(8192,1)

Split CIFAR-10

Linear(128,8192)
BatchNorm1d

ReLU
Reshape(512,4,4)

ConvTranspose2d(512,256,ks=(2,2))
BatchNorm2d

ReLU
ConvTranspose2d(256, 128, ks=(2,2))

BatchNorm2d
ReLU

ConvTranspose2d(128, 3, ks=(2,2), s=(2,2))
TanH

Conv2d(3,128,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(128,256,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(256,512,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Flatten
Linear(8192,1)

Imagenet-50

Linear(128,8192)
BatchNorm1d

ReLU
Reshape(512,4,4)

ConvTranspose2d(512,256,ks=(2,2))
BatchNorm2d

ReLU
ConvTranspose2d(256, 128, ks=(2,2))

BatchNorm2d
ReLU

ConvTranspose2d(128, 3, ks=(2,2), s=(2,2))
TanH

Conv2d(3,128,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(128,256,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Conv2d(256,512,ks=(3,3),s=(2,2))
LeakyReLU(ns=0.01)

Flatten
Linear(8192,1)

Table 6: Architecture of the WGAN employed for the generative experiment. In the table, ks indicates kernel sizes, s identifies
strides, and ns refers to the negative slope of Leaky ReLU activations.


