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Theorem 1 (Theorem 4). Denote u'(6)
U(fo(g;,vi),ai)wi(0), ©w = >0 u'(0)/n, V(u)

> (ui(8) —6)2 /(n —1) and Q. = log (10 - €/7) for
0 < v < 1 and € the e-cover for the function class that
predicts the answer. With probability at least 1 — vy for
n > 16 we have

R(0) < RM(0) + \/18V(u)Q,/n + 15M Q. /(n — 1)

Proof. Follows the proof in Theorem 6 of [2]. ]

The density of the counterfactuals based on the observa-
tions, i.e.
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Proof of Equation[5] We have:
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Proof of Lemma (5). We have,

p*D(a,q,9) = pPD(alg,d)p?P (g, o)

= E(qw)Np [pdo(l)m,’v(a‘[]’ ﬁ)pdo(l)\q,v ([]7 1~)):| }

Then using Jensen’s inequality we have,
108 (E(q ) ~p [p119 (alg, 5)p™ D19 (g, 5)])
> B(gu)mp [log(p ™10 (alg, 2)p D147 (3,9))]

‘We have:
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which is then lower-bounded as
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Log-density of the joint for the question,image and answer as
Eq. (8) in the paper:
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Proof of Equation[8] If we want to use an alternative distri-



bution
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Figure 1: CIFARI1O0 results

1. Implementation details

We implemented our approach on top of the original
UpDn system [1]. The base system utilizes a Faster R-
CNN head in conjunction with a ResNet-101 base network
as the object detection module. For the VQA v2 exper-
iment we utilize the ResNet-152 for detection. The de-
tection head is pre-trained on the Visual Genome dataset.
UpDn takes the final detection outputs and performs non-
maximum suppression (NMS) for each object category us-
ing an IoU threshold of 0.7. Then, the convolutional fea-
tures for the top 36 objects are extracted for each image as
the visual features. For question embedding, we perform
standard text pre-processing and tokenization. In partic-
ular, questions are first converted to lower case and then
trimmed to a maximum of 14 words, and the words that
appear less than 5 times are replaced with an “<unk>" to-
ken. We use GloVe embeddings and subsequently GRU for
VQA-CP and LSTM for VQA v2A to sequentially process
the word vectors and produce a sentential representation for
the pre-processed question.
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Figure 2: CIFAR results
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