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1. Details on Architecture and Training

In this section, we present details related to the architec-
ture of models used and the impact of change in hyperpa-
rameters.

1.1. Architecture details for Fashion-MNIST and
MNIST

We use a modified LeNet architecture for all our experi-
ments on Fashion-MNIST and MNIST datasets. This archi-
tecture has two additional convolutional layers when com-
pared to the standard LeNet architecture [8]. Architecture
details are presented in Table-1.

1.2. Impact of change in Hyperparameters

In this section, we study the effect of variation in the
hyperparameter λ (Eq. (2) in main paper). For CIFAR-10
dataset, we set the initial value of λ to be 1, and multiply
this by a constant factor every 25 epochs (3 times over 100
epochs). We present the results obtained by changing the
rate of increase in λ for CIFAR-10 dataset in Fig-1. As
the rate increases, accuracy on clean samples reduces, and
accuracy on adversarial samples increases. The clean ac-
curacy saturates to about 70%, and accuracy on adversarial
samples saturates to approximately 40%. The best trade-off
between both is obtained at a rate of 15, where the clean ac-
curacy is 75.28% and adversarial accuracy is 40.6%. How-
ever, for a fair comparison with PGD training and other ex-
isting methods, we select the rate at which clean accuracy
matches with that of PGD-AT. Hence, the selected hyper-
parameter is 9.

We use a similar methodology for hyperparameter selec-
tion in MNIST and Fashion-MNIST datasets as well. For
these datasets, we set a fixed value of λ and do not increase
it over epochs. The value of λ is selected such that the accu-
racy on clean samples matches with that of a PGD trained
model.

∗Equal contribution

Table 1: Network architectures used for Fashion-MNIST
and MNIST datasets. Modified LeNet is used for train-
ing the model and Net-A is used as a source for generating
black-box attacks.

Modified LeNet (M-LeNet) Net-A

{conv(32,5,5) + Relu}×2 Conv(64,5,5) + Relu
MaxPool(2,2) Conv(64,5,5) + Relu

{conv(64,5,5) + Relu}×2 Dropout(0.25)
MaxPool(2,2) FC(128) + Relu

FC(512) + Relu Dropout(0.5)
FC + Softmax FC + Softmax
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Figure 1: Plot of recognition accuracy (%) on clean sam-
ples and PGD samples versus the rate of increase in
hyperparameter(λ) used for BPFC training. The selected
setting (9) is highlighted using a cross mark.
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Table 2: Fashion-MNIST: Recognition accuracy (%) of
models in a white-box attack setting.

Training
method Clean FGSM IFGSM PGD (n-steps)

40 steps 40 100 1000

FGSM-AT 93.0 89.9 25.3 15.5 15.1 15.0
RSS-AT 87.7 81.2 77.5 72.0 71.8 71.8
PGD-AT 87.4 81.4 80.2 79.1 79.0 79.0

NT 92.0 16.6 2.4 0.3 0.3 0.3
Mixup 91.0 37.7 0.1 0.0 0.0 0.0
BPFC (Ours) 87.1 73.1 70.2 68.0 67.7 67.7

Table 3: MNIST: Recognition accuracy (%) of models in a
white-box attack setting.

Training
method Clean FGSM IFGSM PGD (n-steps)

40 steps 40 100 1000

FGSM-AT 99.4 89.6 29.4 13.8 4.9 3.7
RSS-AT 99.0 96.4 93.1 93.0 90.9 90.4
PGD-AT 99.3 96.2 94.9 95.4 94.3 94.1

NT 99.2 82.7 0.5 0.0 0.0 0.0
Mixup 99.4 58.1 0.2 0.0 0.0 0.0
BPFC (Ours) 99.1 94.4 92.0 91.5 86.6 85.7

Table 4: PGD attack with multiple random restarts:
Recognition accuracy (%) of different models on PGD ad-
versarial samples with multiple random restarts in a white-
box setting.

Training
method

CIFAR-10 Fashion-MNIST MNIST
PGD 50-steps PGD 100-steps PGD 100-steps

# restarts : 1 100 1000 1 100 1000 1 100 1000

PGD-AT 45.3 44.9 44.9 80.6 79.7 79.6 92.9 90.9 90.6
RSS-AT 45.2 44.7 44.7 74.1 73.4 73.2 88.7 86.3 85.6
BPFC (Ours) 35.6 35.1 34.9 69.4 68.4 68.3 84.0 80.5 79.9

2. Details on Experimental Results
In this section, we present additional experimental re-

sults to augment our observations and results presented in
the main paper.

2.1. White-box attacks

2.1.1 Bounded attacks

Detailed results on Fashion-MNIST and MNIST white-box
attacks are presented in Tables-2 and 3 respectively. The
proposed method achieves significantly better robustness to
multi-step adversarial attacks when compared to Normal
training (NT), FGSM-AT and Mixup. The robustness to
multi-step attacks using the proposed approach is compa-
rable to that of PGD-AT and RSS-AT models, while being

Table 5: DeepFool and C&W attacks (Fashion-MNIST):
Average `2 norm of the generated adversarial perturbations
is reported. Higher `2 norm implies better robustness. Fool-
ing rate (FR) represents percentage of test set samples that
are misclassified.

Training
method

DeepFool C&W

FR (%) Mean `2 FR (%) Mean `2

FGSM-AT 94.34 1.014 100.0 0.715
PGD-AT 90.70 3.429 100.0 2.142
RSS-AT 91.22 2.762 99.9 1.620

NT 94.07 0.467 100.0 0.406
Mixup 92.22 0.226 100.0 0.186
BPFC (Ours) 90.94 3.620 100.0 1.789

Table 6: DeepFool and C&W attacks (MNIST): Aver-
age `2 norm of the generated adversarial perturbations is
reported. Higher `2 norm implies better robustness. Fool-
ing rate (FR) represents percentage of test set samples that
are misclassified.

Training
method

DeepFool C&W

FR (%) Mean `2 FR (%) Mean `2

FGSM-AT 99.36 3.120 100.0 1.862
PGD-AT 95.97 5.316 100.0 3.053
RSS-AT 94.41 4.894 98.2 2.725

NT 99.15 1.601 100.0 1.427
Mixup 91.82 0.518 100.0 0.498
BPFC (Ours) 97.47 6.289 100.0 3.041

faster than both approaches.

We run the PGD attack with multiple random restarts
on a random sample of 1000 test set images, equally dis-
tributed across all classes. This experiment is done to ensure
that the achieved robustness is not due to gradient masking.
The results with random restarts are presented in Table-4.
Here, the overall accuracy is computed as an average over
the worst-case per-sample accuracy, as suggested by Carlini
et al. [2]. A 50-step PGD attack is performed on CIFAR-
10 dataset, and a 100-step attack is performed on Fashion-
MNIST and MNIST datasets. The degradation from 100
random restarts to 1000 random restarts is insignificant
across all datasets, indicating the absence of gradient mask-
ing. Degradation from a single run to 100 random restarts is
also insignificant for CIFAR-10 and Fashion-MNIST. How-
ever, the degradation is larger for MNIST, similar to the
trend observed with PGD-AT and RSS-AT models. It is
to be noted that the results corresponding to this experiment
may not coincide with those reported in Table-1 in the main
paper, and Tables-2 and 3 in the Supplementary, as we con-
sider only a sample of the test set for this experiment.



2.1.2 Unbounded attacks

The results with unbounded attacks (DeepFool [10] and
Carlini-Wagner (C&W) [3]) for Fashion-MNIST and
MNIST datasets are presented in Tables-5 and 6 respec-
tively. We select the following hyperparameters for C&W
attack on Fashion-MNIST and MNIST datasets: search
steps = 9, max iterations = 500, learning rate = 0.01. For
DeepFool attack, we set the number of steps to 100 for both
Fashion-MNIST and MNIST datasets.

The average `2-norm of the generated perturbations to
achieve approximately 100% fooling rate using C&W at-
tack is higher with the proposed approach when compared
to most other approaches, with the exception of PGD-AT,
whose average `2-norm is marginally higher. DeepFool
attack does not achieve 100% fooling rate for Fashion-
MNIST and MNIST datasets, as was the case with CIFAR-
10 (ref: Section-5.3.3, main paper). However, since the
fooling rates of the proposed approach are comparable to,
or greater than that of PGD-AT and RSS-AT, we can make a
fair comparison between the required `2-norm for achieving
the given fooling rate across these approaches. We observe
that the proposed approach is more robust to DeepFool at-
tack, when compared to both of these approaches.

2.2. Black-box attacks

Multi-step attacks such as I-FGSM are known to show
weak transferability across models in a black-box setting
[7]. Dong et al. [4] introduced a momentum term in the op-
timization process of I-FGSM, so as to increase the transfer-
ability of the generated adversarial samples. This attack is
referred to as the Momentum Iterative FGSM (MI-FGSM)
attack.

The results corresponding to black-box multi-step PGD
and MI-FGSM attacks are presented in Tables-7 and 8 re-
spectively. We consider two source models for black-box
attacks on each of the models trained: one with the same
architecture as the target model, and second with a different
architecture. For Fashion-MNIST and MNIST, the architec-
ture of the second model (Net-A) is presented in Table-1.
For CIFAR-10, we consider a second model with VGG-19
[11] architecture. The proposed approach achieves a signifi-
cant improvement in robustness to adversarial samples with
respect to Normal Training (NT) and Mixup, and compara-
ble results with respect to the adversarial training methods,
across all the datasets.

2.3. Adaptive attacks

In this section, we explain the adaptive attacks used in
this paper in greater detail. We utilize information related
to the proposed regularizer to construct potentially stronger
attacks when compared to a standard PGD attack. We max-
imize the following loss function to generate an adaptive
attack corresponding to each data sample xi:

Table 7: PGD Black-box attacks: Recognition accuracy
(%) of different models on PGD black-box adversaries.
Columns represent source model used for generating the at-
tack. 7-step attack is used for CIFAR-10 and 40-step attack
is used for Fashion-MNIST and MNIST

Training
method

CIFAR-10 Fashion-MNIST MNIST

VGG19 ResNet18 Net-A M-LeNet Net-A M-LeNet

FGSM-AT 85.85 85.61 94.27 91.52 79.8 74.11
RSS-AT 80.92 80.82 84.71 83.91 95.19 96.27
PGD-AT 81.37 81.22 85.16 85.71 96.52 96.69

NT 16.86 0 27.10 0.33 4.64 0.03
Mixup 30.16 29.53 49.07 60.71 31.4 58.25
BPFC (Ours) 80.42 80.15 81.45 83.00 95.31 95.91

Table 8: MI-FGSM [4] Black-box attacks: Recognition
accuracy (%) of different models on MI-FGSM black-box
adversaries. Columns represent source model used for gen-
erating the attack. 7-step attack is used for CIFAR-10 and
40-step attack is used for Fashion-MNIST and MNIST

Training
method

CIFAR-10 Fashion-MNIST MNIST

VGG19 ResNet18 Net-A M-LeNet Net-A M-LeNet

FGSM-AT 76.44 74.22 94.61 92.11 79.95 73.92
RSS-AT 80.21 80.10 84.61 84.02 96.11 95.28
PGD-AT 80.47 80.59 84.98 85.58 95.56 95.34

NT 12.98 0.04 28.28 4.69 12.48 1.93
Mixup 35.74 25.22 50.60 63.32 43.72 62.98
BPFC (Ours) 79.04 79.04 81.33 82.70 94.03 94.46

Li = λce ce(f(xi), yi) + λg‖g(xi)− g(q(xi))‖22
− λLSB‖xi − q(xi)‖22 (1)

The quantized image corresponding to xi is denoted by
q(xi). We consider f(.) as the function mapping of the
trained network, from an image xi, to its corresponding
softmax output f(xi). The corresponding pre-softmax out-
put of the network is denoted by g(xi). The ground truth
label corresponding to xi is denoted by yi. The first term
in the above equation is the cross-entropy loss, the second
term is the BPFC regularizer proposed in this paper, and
the third term is an `2 penalty term on the magnitude of k
LSBs. We consider the value of k to be the same as that
used for training the models (ref: Section-5.1 in the main
paper). The coefficients of these loss terms are denoted by
λce, λg and λLSB respectively.

Maximizing the cross-entropy term leads to finding sam-
ples that are misclassified by the network. Maximizing the
BPFC loss results in finding samples which do not comply
with the BPFC regularizer imposed during training. Min-
imizing the third term would help find samples with low
magnitude LSBs, which are possibly the points where the
defense is less effective. The objective of an adversary is



Table 9: CIFAR-10: Recognition accuracy (%) of the
model trained using the proposed approach on adversarial
samples generated using adaptive attacks.

Adaptive attack Loss coefficients n-step Adaptive attack

λce λg λLSB 7 20 50

PGD 1 0 0 41.72 35.74 34.68

Variation in λg
(λce = 1 and
λLSB = 0)

1 0.1 0 41.67 35.65 34.61
1 1 0 41.49 35.42 34.52
1 10 0 42.15 36.14 35.30

Variation in λg
(λce = 0 and
λLSB = 0)

0 0.1 0 41.65 35.62 34.58
0 0.5 0 41.54 35.45 34.41
0 1 0 64.35 59.95 59.16
0 10 0 42.15 36.15 35.30

Variation in λLSB

(λce = 1 and
λg = 0)

1 0 1 42.00 35.96 34.89
1 0 10 48.49 41.40 39.60

Variation in λLSB

(λce = 1 and
λg = 1)

1 1 1 41.67 35.47 34.52
1 1 10 46.07 37.54 35.79

Table 10: Fashion-MNIST: Recognition accuracy (%) of
the model trained using the proposed approach on adversar-
ial samples generated using adaptive attacks.

Adaptive attack Loss coefficients n-step Adaptive attack

λce λg λLSB 40 100 500

PGD 1 0 0 68.03 67.75 67.71

Variation in λg
(λce = 1 and
λLSB = 0)

1 1 0 69.41 69.22 69.19
1 10 0 76.72 76.44 76.46
1 25 0 78.95 78.8 78.79

Variation in λg
(λce = 0 and
λLSB = 0)

0 1 0 80.45 80.23 80.2
0 10 0 80.46 80.24 80.22
0 25 0 80.46 80.22 80.18
0 50 0 80.46 80.22 80.18

Variation in λLSB

(λce = 1 and
λg = 0)

1 0 1 68.2 67.98 67.95
1 0 10 71.32 70.98 70.98

Variation in λLSB

(λce = 1 and
λg = 25)

1 25 1 78.96 78.8 78.77
1 25 10 78.91 78.74 78.76

to cause misclassification, which can be achieved by maxi-
mizing only the first term in Eq. (1). However, the proposed
defense mechanism could lead to masking of the true solu-
tion, thereby resulting in a weak attack. Thus, the role of
the remaining terms, which take into account the defense
mechanism, is to aid the optimization process in finding
such points, if any. The remainder of the algorithm used
is similar to that proposed by Madry et al. [9]. The re-
sults with adaptive attacks for CIFAR-10, Fashion-MNIST
and MNIST datasets are presented in Tables-9, 10 and 11 re-

Table 11: MNIST: Recognition accuracy (%) of the model
trained using the proposed approach on adversarial samples
generated using adaptive attacks.

Adaptive attack Loss coefficients n-step Adaptive attack

λce λg λLSB 40 100 500

PGD 1 0 0 91.49 86.6 85.63

Variation in λg
(λce = 1 and
λLSB = 0)

1 1 0 92.99 89.13 88.2
1 10 0 94.58 91.75 91.04
1 30 0 94.74 91.99 91.26

Variation in λg
(λce = 0 and
λLSB = 0)

0 1 0 94.8 91.96 91.34
0 10 0 94.8 91.97 91.34
0 30 0 94.79 91.98 91.38
0 50 0 94.79 91.97 91.35

Variation in λLSB

(λce = 1 and
λg = 0)

1 0 1 91.56 86.96 86.01
1 0 10 93.51 90.11 89.41

Variation in λLSB

(λce = 1 and
λg = 30)

1 30 1 94.72 91.98 91.33
1 30 10 94.7 91.97 91.36

spectively. We consider the following coefficients in Eq. (1)
to find a strong adaptive attack:

• λce = 1, λg = 0, λLSB = 0
This corresponds to a standard PGD attack [9], which
serves as a baseline in this table. The goal of the re-
maining experiments is to find an attack stronger than
this.

• λce = 1, λg = variable, λLSB = 0
This case corresponds to using the training loss di-
rectly to find adversarial samples. We find that lower
values of λg lead to stronger attacks, while still not be-
ing significantly stronger than baseline. This indicates
that addition of the BPFC regularizer does not help in
the generation of a stronger attack.

• λce = 0, λg = variable, λLSB = 0
For CIFAR-10 dataset, this case is able to generate at-
tacks which are as strong as PGD, without using the
cross-entropy term. This indicates that the BPFC loss
term is relevant in the context of generating adversarial
samples. However, addition of this to the cross-entropy
term does not generate a stronger attack, as the de-
fense is not masking gradients that prevents generation
of stronger adversaries. However, for Fashion-MNIST
and MNIST datasets, this attack is weaker than PGD.

• λce = 1, λg = variable, λLSB = variable
Next, we consider the case of introducing the third
term that imposes a penalty on high magnitude LSBs.
Addition of this term with or without the BPFC term
does not help generate a stronger attack, indicating
that this training regime does not create isolated points
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Figure 2: Plot of recognition accuracy (%) on PGD samples generated on test set versus perturbation size of PGD 7-step
attack. The model’s accuracy is zero for large perturbation sizes indicating the absence of gradient masking.

Figure 3: Plot of average loss on FGSM samples generated on test set versus perturbation size of FGSM attack.

in the `∞-ball around each sample, which correspond
to points with low magnitude LSBs. This can be at-
tributed to the addition of pre-quantization noise.

Overall, the adaptive attacks constructed based on the
knowledge of the defense mechanism do not lead to
stronger attacks. This leads to the conclusion that the pro-
posed defense does not merely make the process of finding
adversaries harder, but results in learning models that are
truly robust.

2.4. Basic Sanity Checks to verify Robustness

In this section, we present details related to Section-5.7
in the main paper. The plots of accuracy verses perturba-
tion size in Fig.2 demonstrate that unbounded attacks are
able to reach 100% success rate. It can be observed that in-
creasing the distortion bound increases the success rate of
the attack. Fig-3 shows a plot of the average loss on FGSM
samples generated on the test set, versus perturbation size of
the FGSM attack. It can be observed that the loss increases
monotonically with an increase in perturbation size. These
two plots confirm that there is no gradient masking effect
[1] in the models trained using the proposed approach.

Table 12: ImageNet (white-box attacks): Recognition ac-
curacy (%) of BPFC trained model and PGD-AT model on
ImageNet dataset under white-box attack setting. Accuracy
is reported on the following untargeted attacks: FGSM at-
tack, I-FGSM 20-step attack (IFGSM), PGD 20-step attack
and PGD 100-step attack. Accuracy on PGD 20-step tar-
geted attack (with random targets) is also reported (TPGD).

Training
method Clean FGSM IFGSM PGD PGD TPGD

(20) (20) (100) (20)

PGD-AT 47.91 24.42 21.52 19.39 19.06 43.43
BPFC (Ours) 40.82 19.97 15.93 13.41 12.82 32.91

2.5. Scalability of the Proposed Method to ImageNet

We report results on ImageNet dataset using the pro-
posed method and PGD-AT in Table-12. The architecture
used for both methods is ResNet-50 [6]. We use the PGD-
AT pre-trained model from [5] for comparison. We train the
proposed method for 125 epochs and decay learning rate by
a factor of 10 at epochs 35, 70 and 95. Similar to CIFAR-
10, we start with a λ of 1 and step it up by a factor of 9 at
epochs 35 and 70. We use a higher step-up factor of 20 at
epoch 95 to improve robustness. Since training ImageNet



models is computationally intensive, we report results us-
ing similar hyperparameters as that of CIFAR-10. However,
tuning hyperparameters specifically for ImageNet can lead
to improved results. Accuracy on black-box FGSM attack
is 47.39% for PGD-AT and 40.41% for the BPFC trained
model. We note that the trend in robustness when com-
pared to PGD-AT is similar to that of CIFAR-10, thereby
demonstrating the scalability of the proposed approach to
large scale datasets.
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