
From two rolling shutters to one global shutter
Supplementary Material

Cenek Albl1 Zuzana Kukelova2 Viktor Larsson1 Michal Polic3 Tomas Pajdla3 Konrad Schindler1

1ETH Zurich 2VRG, FEE, CTU in Prague. 3CIIRC, CTU in Prague

1. Detailed derivations
This section contains a more detailed derivation of the re-
sults presented in sections 3.4-3.6 in the main paper.

1.1. Translation in all axes

In this subsection, we present detailed derivation of equa-
tion (17) in the main paper, which describes the case of a
general translational motion with constant velocity. In this
case we have the translational velocity described by a vector
t =

[
tx ty tz

]>
and there is no rotational velocity, i.e.

Rω(α) = I. Substituting these in equation (4) in the main
paper we obtain

λiui =

I |
 txty
tz

 vi
 Xi

λ′iu
′
i =

Rr | Rr
 txty
tz

 v′i
 Xi

. (1)

We are interested in a global shutter image that would be
captured by a GS camera in a place of our camera pair, i.e.,
the first equation of (1) minus the translational motion

λiugi = [I | 0] Xi. (2)

By multiplying the second matrix equation in (1) from the
left with R>r = diag([−1, −1, 1, ]) and by subtracting this
equation from the first one, we obtain equation (17) in the
main paper.

1.2. Translation in the xy-plane

Considering only the translation in the xy-plane, we have a
translational velocity vector t =

[
tx ty 0

]>
and equa-

tions (17) in the main paper become txty
0

 vi −
 txty

0

 v′i =
uivi

1

λi −
−u′i−v′i

1

λ′i , (3)

By subtracting the equation corresponding to the second
row in (3) from the equation corresponding to the first we

obtain a system of two equations in three unknowns tx, ty
and λi

[
vi − v′i 0 −ui − u′i

0 vi − v′i −vi − v′i

] txty
λi

 = 0 . (4)

For a single correspondence this is a homogeneous system
of linear equations of rank two (unless vi = v′i). Solving 4
brings us to equation (18) in the main paper.

1.3. Translation in the x-axis

For the motion only along the camera x-axis we have t =[
tx ty 0

]>
and equations (17) in the main paper be-

come tx0
0

 vi −
 tx0

0

 v′i =
uivi

1

λi −
−u′i−v′i

1

λ′i. (5)

From the third row we immediately see that λi = λ′i, and
thus the second row yields vi = −v′i. From the first row we
see that

txvi − txv′i = (ui + u′i)λi
txvi + txvi = (ui + u′i)λi

tx =
ui+u′

i

2vi
λi,

(6)

which gives us a direct relation between the perspective
depth λi of the 3D point Xi and the translational velocity
tx. We are, again, interested in a global shutter image that
would be captured by a GS camera in a place of our cam-
era pair, i.e., the first equation of 1 minus the translational
motion and we obtain

λiugi = λiui − tvi = λiui −

 tx0
0

 vi . (7)

1



Substituting tx from equation (6) leads to

λiugi = λiui −

 ui+u′
i

2vi
λi

0
0

 vi
ugi =

 ui+u′
i

2
vi
1

 , (8)

which is the result presented in the paper, suggesting that we
can simply interpolate the x-coordinate of the correspond-
ing projections to obtain a GS equivalent one.

2. 6DOF solver with known baseline
As promised, we present an extension of the solution in sec-
tion 3.1 of the main paper, which solves the case when there
is a known, fixed baseline between the cameras. Although
we did not use this solution for the results in the main paper,
since the baseline between the cameras was negligible com-
pared to the scene distance, it could be useful for systems
with larger baselines such as stereo setups on robots, cars,
etc. We can augment equations (5) in the main paper by a
known baseline b as

P(vi) = [Rω(vi) | t vi]
P′(v′i) = [RrRω(v

′
i) | v′i Rrt+ Rrb]

(9)

and, analogously to the solution in the main paper, trans-
form them so the first camera is identified with the world
coordinate system, obtaining

P = [I | 0]
P′ (vi, v

′
i) = [R(vi, v

′
i) | v′iRrt+ Rrb− viR(vi, v′i)t],

(10)
where R(vi, v

′
i) = RrRω(v

′
i)Rω(vi)

>. The essential matrix
in equation (7) of the main paper will now become

E(vi, v
′
i) = [t(vi, v

′
i)]× R(vi, v

′
i) , (11)

where t(vi, v
′
i) = v′iRrt + Rrb − viR(vi, v

′
i)t. Note

that we are now also solving for the scale of t with re-
spect to the baseline, cannot use the parameterization t =[
1− x x y

]
and therefore need six correspondences to

solve for the six unknowns.
Similarly to the no-baseline case, we use the hidden vari-

able trick. Hiding the translation t, we get equations in only
the rotation parameters. Applying the generator from [2]
we generate a solver for this system as well. The solver per-
forms Gaussian elimination on a 15× 15 matrix and solves
a 20× 20 eigenvalue problem.

In Fig. 1 we compare the solvers presented in the main
paper on data where cameras have an increasing baseline
to the solution with known baseline provided here. One
can see that the performance of the baseline solver provides
stable performance over the increasing baseline.

0 0.08 0.17 0.25 0.33 0.42 0.5

Baseline to minimal scene distance ratio 

0

5

10

15

E
rr

o
r 

in
 p

ix
e
ls

Rotation + translation, LO-RANSAC, w/ baseline

Figure 1: The solvers that do not consider a baseline (in-
terpolation, txy, txyz, ω, ωt) gracefuly degrade in perfor-
mance as the actual baseline in the data increases, whereas
the 6DOF solver that considers a baseline (black) provides
stable performance in terms of the pixel error of the undis-
torted correspondences with respect to the global shutter
equivalent correspondences.

3. Combining the undistorted images

As described in section 5 of the main paper, when perform-
ing the undistortion of images distorted by rotational motion
we actually obtain two undistorted images by warping each
of the inputs to the virtual global shutter image plane. Each
input image covers a part of a scene content that is not visi-
ble in the other image. Therefore, it makes sense to combine
both undistorted images to obtain a more complete image.
In Fig. 2 you can see several examples of the distorted in-
puts, the undistorted images and the combined output. Note
that the images were only warped to the same image plane
using the rotational velocity computed by ω solver and op-
timized using non-linear least squares refinement step min-
imizing equation (20) in the main paper, no other image
processing was performed. One can notice small disconti-
nuities at the boundaries, which could be improved by addi-
tional image processing software suited for image blending.

4. Correcting images distorted by translation

Pixel-wise correspondences
First, the pixel-wise correspondences must be found for

both images. We found PWC-net [3] to work the best for
these purposes. We compare the flow from the first image to
the second as well as the flow from the second image to the
first and filter out the flow vectors that are not consistent,
see Fig.3. Since we know that the flow is caused by the
difference in time of capture, that is zero for the middle row
and increases towards the top and bottom of the image we
can also filter the flow further by introducing a treshold on
the maximum flow based on the distance from the middle
row of the image.

2



Figure 2: Combining the two undistorted outputs. Dis-
played are the input images (top), warped results (middle)
and the combined result (bottom).

Figure 3: Flow estimated using PWC-net [3].

Motion estimation
Second step is computing the 6DOF motion parameters.

Although, in principle we could use just the txy or even
tx solver to solve for the translation if we knew the motion
was purely translational we did not resort to such constraint,
since our data was coming from a handheld camera travel-
ling in a car and rotation could be present as well.

We have two choices of correspondences to use - sparse
matches coming from, e.g., SIFT features or dense matches
coming from the optical flow. Although sparse correspon-
dences are usually more reliable, because they come from
distinct image features and are usually sub-pixel precise, we
found that they are in some cases not sufficient for correct
motion estimation, since the parts of the image that deter-
mine the motion - e.g. the pole in Fig. 3 might contain only
little texture and provide only few features. The correspon-
dences coming from the flow are therefore a better candi-
date for a robust solution.

Choosing good correspondences for RANSAC
RANSAC is necessary for filtering mismatches. We

found that to estimate correct motion parameters, the pixel-
wise correspondences obtained from optical flow should
not be used without proper pre-selection. To determine
the motion, some correspondences carry more information
than others. E.g. in our case, the correspondences around
the middle row (where the temporal displacement is small)
carry only little information and have low signal to noise
ratio.

Another issue is that some types of motion cause very
similar distortions to others, e.g. translation in x causes the
same distortions as rotation around y if the scene is planar.
Therefore, our motion estimation is prone to the presence
of a dominant plane, similar to the estimation of epipolar
geometry [1]. In our scenario, we found that for a gen-
eral scene it is important to choose a balanced set of cor-
respondences that contain both large displacements on the

3



Figure 4: Depth maps projected in a virtual GS image plane,
each created using one direction of the flow. Darker means
closer. Notice the wrongly estimated flow in the bottom half
of the image creates errors in the depth estimation.

foreground objects as well as the small displacements that
appear towards the top or bottom of the image (around the
middle row of the image all displacements will be small),
because only using those we can distinguish between trans-
lational and rotational motion.

If, e.g. in the example in Fig. 3 we would select a uni-
form representation of correspondences accros the entire
image, the correspondences on the slanted pole would be
dominated by correspondences from other parts of the im-
age in RANSAC, even though they are very important for
determining the correct motion parameters.

Depth maps and occlusion masks
After computing the motion parameters, we can proceed

to computing the pixel-wise depth from the flow. We com-
pute two depth maps, one for each flow, see Fig. 4. The
depth is computed in the following way. Using the mo-
tion parameters ω and t we create for each correspondence
ui ↔ u′i the camera matrices corresponding to their rows,
i.e. P(vi) and P(v′i), using equation (4) in the main pa-
per. We then use these projection matrices and the corre-
sponding image points to triangulate a 3D point Xi, which
we project into a virtual GS camera coordinate system by
PX =

[
I 0

]
= X =

[
X1 X2 X3

]>
. The depth X3

is then projected at the corresponding location in the image
plane, i.e.

[
X1/X3 X2/X3

]
. A small number of rows

around the middle of the image is filled with zeros as we
consider the depth there to be too unreliable and we just use
interpolation of the input images in this region.

By comparing the depth assigned to each pixel from
the first and from the second flow we determine the occlu-
sion mask, which tells us which image has pixel value that
should be assigned to this location, see Fig. 5. This is im-
portant, since the flow is also estimated for pixels that lie in
occluded regions and therefore don’t actually have a corre-
spondence and those should be filled with values from the
image in which the occluding object was not present. If the
mask is zero for given location, it means that this location in
the final image should not be filled with pixels coming from
the corresponding input image. White areas in figure 5 de-
pict the areas with zeros.

Figure 5: Occlusion masks for both input images computed
based on the flow. Based on those we decide from which
image we take pixels in areas that are occluded. White areas
mean we do not fill the pixels at this location in the final
image from the respective input image.

Figure 6: Final depth map fused from the two in Fig.4. No-
tice that in the lower half of the image, errors in the es-
timated flow cause errors in the depth estimation. In the
middle region the depth is undetermined.

Before the final undistortion we fuse the two depth maps,
taking the closer values from each, see figure 6.

Creating the final image
Final image is created by traversing the depth map pixel

by pixel, recovering the corresponding 3D point X and find-
ing the coordinates where this point projects into either of
the input images based on the occlusion mask. The pixel
value is then taken from this location. The resulting image
is the left column of Fig. 7.

Note that this approach is very generic and does not as-
sume any properties of the motion, scene or image content
and the results occasionaly contain artefacts due to errors in
the input flow. In the places where good correspondences
are provided, our methods are able to correct large RS dis-
tortion of very challenging scenes, see Fig. 7 right column.

The visual quality of the result could be improved by
assuming scene properties such as piecewise planarity [4],
segmenting the scene, applying more advanced filtering of
the flow and depth maps and further post-processing steps.
This was, however, not the purpose of this work.

4



Figure 7: Undistortion examples on two image pairs, one in each column. From top to bottom - the two input images, the
resulting undistorted image and the corresponding image from a GS camera.

5



References
[1] Ondrej Chum, Tomás Werner, and Jiri Matas. Two-view ge-

ometry estimation unaffected by a dominant plane. In CVPR,
2005.

[2] V. Larsson, Kalle Åström, and Magnus Oskarsson. Efficient
Solvers for Minimal Problems by Syzygy-Based Reduction.
In CVPR, 2017.

[3] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping,
and Cost Volume. In CVPR, 2017.

[4] Subeesh Vasu, Mahesh Mohan M. R., and A. N. Rajagopalan.
Occlusion-Aware Rolling Shutter Rectification of 3d Scenes.
In CVPR, 2018.

6


