
A Characteristic Function Approach to Deep Implicit Generative Modeling
Supplementary Material

Abdul Fatir Ansari†, Jonathan Scarlett†‡, and Harold Soh†

†Department of Computer Science
‡Department of Mathematics

National University of Singapore
{afatir, scarlett, harold}@comp.nus.edu.sg

A. Proofs

A.1. Proof of Theorem 1

Let PX be the data distribution, and let Pgθ(Z) be the distribution of gθ(z) when z ∼ PZ , with PZ being the latent
distribution. Recall that the characteristic function of a distribution Q is given by

ϕQ(t) = Ex∼Q[ei〈t,x〉]. (1)

The quantity CFD2
ω(Pfφ(X),Pfφ(gθ(Z))) can then be written as

CFD2
ω(Pfφ(X),Pfφ(gθ(Z))) = Et∼ω(t;η)

[
|ϕX (t)− ϕθ(t)|2

]
, (2)

where we denote the characteristic functions of Pfφ(X) and Pfφ(gθ(Z)) by ϕX and ϕθ respectively, with an implicit depen-
dence of φ. For notational simplicity, we henceforth denote CFD2

ω(Pfφ(X),Pfφ(gθ(Z))) by Dψ(PX ,Pθ).
Since the difference of two functions’ maximal values is always upper bounded by the maximal gap between the two

functions, we have ∣∣∣sup
ψ∈Ψ

Dψ(PX ,Pθ)− sup
ψ∈Ψ

Dψ(PX ,Pθ′)
∣∣∣ ≤ sup

ψ∈Ψ
|Dψ(PX ,Pθ)−Dψ(PX ,Pθ′)| (3)

≤ |Dψ∗(PX ,Pθ)−Dψ∗(PX ,Pθ′)|+ ε (4)

where ψ∗ = {φ∗, η∗} denotes any parameters that are within ε of the supremum on the right-hand side of (4), and where
ε > 0 may be arbitrarily small. Such ψ∗ always exists by the definition of supremum. Subsequently, we define hθ = fφ∗ ◦ gθ
for compactness.

Let ω∗ denote the distribution ω(t) associated with η∗. We further upper bound the right-hand side of (4) as follows:

|Dψ∗(PX ,Pθ)−Dψ∗(PX ,Pθ′)| =
∣∣∣Eω∗(t) [|ϕX (t)− ϕθ(t)|2

]
− Eω∗(t)

[
|ϕX (t)− ϕθ′(t)|2

]∣∣∣ (5)

(a)

≤ Eω∗(t)
[∣∣∣|ϕX (t)− ϕθ(t)|2 − |ϕX (t)− ϕθ′(t)|2

∣∣∣] , (6)

where (a) uses the linearity of expectation and Jensen’s inequality.
Since any characteristic function is bounded by |ϕP(t)| ≤ 1, the value of |ϕX (t)− ϕθ(t)| for any θ is upper bounded by

1

2. Since the function f(u) = u2 is (locally) 4-Lipschitz over the restricted domain [0, 2], we have∣∣∣|ϕX (t)− ϕθ(t)|2 − |ϕX (t)− ϕθ′(t)|2
∣∣∣ ≤ 4

∣∣∣ |ϕX (t)− ϕθ(t)| − |ϕX (t)− ϕθ′(t)|
∣∣∣ (7)

(b)

≤ 4 |ϕθ(t)− ϕθ′(t)| (8)

= 4
∣∣∣Ez

[
ei〈t,hθ(z)〉

]
− Ez

[
ei〈t,hθ′ (z)〉

]∣∣∣ (9)

(c)

≤ 4Ez

[∣∣∣ei〈t,hθ(z)〉 − ei〈t,hθ′ (z)〉
∣∣∣] , (10)

where (b) uses the triangle inequality, and (c) uses Jensen’s inequality.
In Eq. (10), let

∣∣ei〈t,hθ(z)〉 − ei〈t,hθ′ (z)〉
∣∣ =:

∣∣eia − eib∣∣, which can be interpreted as the length of the chord that subtends
an angle of |a− b| at the center of a unit circle centered at origin. The length of this chord is given by 2 sin |a−b|2 , and since
2 sin |a−b|2 ≤ |a− b|, we have ∣∣∣ei〈t,hθ(z)〉 − ei〈t,hθ′ (z)〉

∣∣∣ ≤ |〈t, hθ(z)〉 − 〈t, hθ′(z)〉| (11)

(d)

≤ ‖t‖ · ‖hθ(z)− hθ′(z)‖, (12)

where (d) uses the Cauchy-Schwarz inequality.
Furthermore, using the assumption supη∈Π Eω(t) [‖t‖] <∞, we get

Eω∗(t)
[
Ez

[∣∣∣ei〈t,hθ(z)〉 − ei〈t,hθ′ (z)〉
∣∣∣]] ≤ Eω∗(t) [‖t‖]Ez [‖hθ(z)− hθ′(z)‖] (13)

with the first term being finite.
By assumption, h is locally Lipschitz, i.e., for any pair (θ, z), there exists a constant L(θ, z) and an open set Uθ,z such

that ∀(θ′, z′) ∈ Uθ,z we have ‖hθ(z)− hθ′(z′)‖ ≤ L(θ, z)‖θ − θ′‖. Setting z′ = z and taking the expectation, we obtain

Eω∗(t) [‖t‖]Ez [‖hθ(z)− hθ′(z)‖] ≤ Eω∗(t) [‖t‖]Ez [L(θ, z)] ‖θ − θ′‖ (14)

for all θ′ sufficiently close to θ.
Recall also that Ez [L(θ, z)] <∞ by assumption. Combining Eqs. (6), (10), and (14), we get

|Dψ∗(PX ,Pθ)−Dψ∗(PX ,Pθ′)| ≤ 4Eω∗(t) [‖t‖]Ez [L(θ, z)] ‖θ − θ′‖, (15)

and combining with (4) gives∣∣∣sup
ψ∈Ψ

Dψ(PX ,Pθ)− sup
ψ∈Ψ

Dψ(PX ,Pθ′)
∣∣∣ ≤ 4Eω∗(t) [‖t‖]Ez [L(θ, z)] ‖θ − θ′‖+ ε (16)

≤ 4

(
sup
η∈Π

Eω(t) [‖t‖]
)
Ez [L(θ, z)] ‖θ − θ′‖+ ε. (17)

Taking the limit ε→ 0 on both sides gives∣∣∣sup
ψ∈Ψ

Dψ(PX ,Pθ)− sup
ψ∈Ψ

Dψ(PX ,Pθ′)
∣∣∣ ≤ 4

(
sup
η∈Π

Eω(t) [‖t‖]
)
Ez [L(θ, z)] ‖θ − θ′‖, (18)

which proves that sup
ψ∈Ψ

Dψ(PX ,Pθ) is locally Lipschitz, and therefore continuous. In addition, Radamacher’s theorem [3]

states any locally Lipschitz function is differentiable almost everywhere, which establishes the differentiability claim.

A.2. Proof of Theorem 2

Let xn ∼ Pn and x ∼ P. To study the behavior of sup
ψ∈Ψ

CFD2
ω(P(φ)

n ,P(φ)), we first consider

CFD2
ω(P(φ)

n ,P(φ)) = Eω(t)

[∣∣∣Exn

[
ei〈t,fφ(xn)〉

]
− Ex

[
ei〈t,fφ(x)〉

]∣∣∣2] (19)

Since
∣∣Exn

[
ei〈t,fφ(xn)〉]− Ex

[
ei〈t,fφ(x)〉]∣∣ ∈ [0, 2], using the fact that u2 ≤ 2|u| for u ∈ [−2, 2], we have

Eω(t)

[∣∣∣Exn

[
ei〈t,fφ(xn)〉

]
− Ex

[
ei〈t,fφ(x)〉

]∣∣∣2]
≤ 2Eω(t)

[∣∣∣Exn,x

[
ei〈t,fφ(xn)〉 − ei〈t,fφ(x)〉

]∣∣∣] (20)

(a)

≤ 2Eω(t)

[
Exn,x

[∣∣∣ei〈t,fφ(xn)〉 − ei〈t,fφ(x)〉
∣∣∣]] (21)

(b)

≤ 2Eω(t) [Exn,x [min {2, |〈t, fφ(xn)〉 − 〈t, fφ(x)〉|}]] (22)
(c)

≤ 2Eω(t) [Exn,x [min {2, ‖t‖ · ‖fφ(xn)− fφ(x)‖}]] , (23)

where (a) uses Jensen’s inequality, (b) uses the geometric properties stated following Eq. (10) and the fact that |eia−eib| ≤ 2,
and (c) uses the Cauchy-Schwarz inequality.

For brevity, let Tmax = supη∈Π Eω(t) [‖t‖], which is finite by assumption. Interchanging the order of the expectations
in Eq. (23) and applying Jensen’s inequality (to Eω(t) alone) and the concavity of f(u) = min{2, u}, we can continue the
preceding upper bound as follows:

Eω(t)

[∣∣∣Exn

[
ei〈t,fφ(xn)〉

]
− Ex

[
ei〈t,fφ(x)〉

]∣∣∣2]
≤ 2Exn,x [min {2, Tmax‖fφ(xn)− fφ(x)‖}] (24)
(d)

≤ 2Exn,x [min {2, TmaxLf‖xn − x‖}] , (25)

where (d) defines Lf to be the Lipschitz constant of fφ, with is independent of φ by assumption.
Observe that g(u) = min{2, TmaxLf |u|} is a bounded Lipschitz function of u. By the Portmanteau theorem ([5], Thm.

13.16), convergence in distribution Pn
D−→ P implies that E[g(‖xn − x‖)] → 0 for any such g, and hence (25) yields

sup
ψ∈Ψ

CFD2
ω(P(φ)

n ,P(φ))→ 0 (upon taking supψ∈Ψ on both sides), as required.

A.3. Discussion on an “only if” Counterpart to Theorem 2

Theorem 2 shows that, under some technical assumptions, the function sup
ψ∈Ψ

CFD2
ω(P(φ)

n ,P(φ)) satisfies continuity in the

weak toplogy, i.e.,
Pn

D→ P =⇒ sup
ψ∈Ψ

CFD2
ω(P(φ)

n ,P(φ))→ 0.

where Pn
D→ P denotes convergence in distribution.

Here we discuss whether the opposite is true: Does sup
ψ∈Ψ

CFD2
ω(P(φ)

n ,P(φ)) → 0 imply that Pn
D→ P? In general, the

answer is negative. For example:

• If Φ only contains the function φ(x) = 0, then P(φ) is always the distribution corresponding to deterministically equaling
zero, so any two distributions give zero CFD.

• If ω(t) has bounded support, then two distributions P1,P2 whose characteristic functions only differ for t values outside
that support may still give Eω(t)

[
|ϕP1

(t)− ϕP2
(t)|2

]
= 0.

In the following, however, we argue that the answer is positive when {fφ}φ∈Φ is “sufficiently rich” and {ω}η∈Π is “suffi-
ciently well-behaved”.

Rather than seeking the most general assumptions that formalize these requirements, we focus on a simple special case
that still captures the key insights, assuming the following:

• There exists L > 0 such that {fφ}φ∈Φ includes all linear functions that are L-Lipschitz;

• There exists η ∈ Π such that ω(t) has support Rm, where m is the output dimension of fφ.

−10 −5 0 5 10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

z ∼ N (0, 1)

h(z) = −10 + 5z

p(z)

p(f(z))

(a) D1

−10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

z ∼ N (0, 1)

h(z) = 1
5z + 10 tanh(1000 · 1

5z)

p(z)

p(f(z))

(b) D2

Figure 1: The PDFs ofD1 andD2 (in blue) estimated using Kernel Density Estimation (KDE) along with the true distribution
p(z) (in red).

To give examples of these, note that neural networks with ReLU activations can implement arbitrary linear functions (with
the Lipschitz condition amounting to bounding the weights), and note that the second assumption is satisfied by any Gaussian
ω(t) with a fixed positive-definite covariance matrix.

In the following, let xn ∼ Pn and x ∼ P(φ). We will prove the contrapositive statement:

Pn
D

6→ P(φ) =⇒ sup
ψ∈Ψ

CFD2
ω(Pn,P(φ)) 6→ 0.

By the Cramér-Wold theorem [2], Pn
D

6→ P(φ) implies that we can find constants c1, . . . , cd such that

d∑
i=1

cix
(i)
n

D

6→
d∑
i=1

cix
(i), (26)

where x(i),x
(i)
n denote the i-th entries of x,xn, with d being their dimension.

Recall that we assume {fφ}φ∈Φ includes all linear functions from Rd to Rm with Lipschitz constant at most L > 0.
Hence, we can select φ ∈ Φ such that every entry of fφ(x) equals 1

Z

∑d
i=1 cix

(i), where Z is sufficiently large so that the

Lipschitz constant of this fφ is at most L. However, for this φ, (26) implies that fφ(xn)
D

6→ fφ(x), which in turn implies that
|ϕP(φ)

n
(t)− ϕP(φ)(t)| is bounded away from zero for all t in some set T of positive Lebesgue measure.

Choosing ω(t) to have support Rm in accordance with the second technical assumption above, it follows that
Eω(t)

[
|ϕP(φ)

1
(t)− ϕP(φ)

2
(t)|2

]
6→ 0 and hence sup

ψ∈Ψ
CFD2

ω(P(φ)
n ,P(φ)) 6→ 0.

B. Implementation Details

B.1. Synthetic Data Experiments

The synthetic data was generated by first sampling z ∼ N (0, 1) and then applying a function h to the samples. We
constructed distributions of two types: a scale-shift unimodal distribution D1 and a “scale-split-shift” bimodal distribution
D2. The function h for the two distributions are defined as follows:

• D1: h(z) = µ + σz; we set µ = −10 and σ = 1
5 . This shifts the mean of the distribution to −10, resulting in the

N (−10, 1
52) distribution. Fig. 1a shows the PDF (and histogram) of the original distribution p(z) and the distribution of

h(z), which is approximated using Kernel Density Estimation (KDE).

• D2: h(z) = αz + β tanh(γαz); we set α = 1
5 , β = 10, γ = 100. This splits the distribution into two modes and

shifts the two modes to −10 and +10. Fig. 1b shows the PDF (and histogram) of the original distribution p(z) and the
distribution of h(z), which is approximated using KDE.

For the two cases described above, there are two transformation functions that will lead to the same distribution. In each
case, the second transformation function is given by:

• D1: g(z) = µ− σz

• D2: g(z) = −αz + β tanh(−γαz)

As there are two possible correct transformation functions (h and g) that the GANs can learn, we computed the Mean
Absolute Error (MAE) as follows

MAE = min
(
Ez
[
|h(z)− ĥ(z)|

]
,Ez

[
|g(z)− ĥ(z)|

])
, (27)

where ĥ is the transformation learned by the generator. We estimated the expectations in Eq. (27) using 5000 samples.
For the generator and critic network architectures, we followed [9]. Specifically, the generator is a multi-layer perceptron

(MLP) with 3 hidden layers of sizes 7, 13, 7, and the Exponential linear unit (ELU) non-linearity between the layers. The
critic network is also an MLP with 3 hidden layers of sizes 11, 29, 11, and the ELU non-linearity between the layers. The
inputs and outputs of both networks are one-dimensional. We used the RMSProp optimizer with a learning rate of 0.001 for
all models. The batch size was set to 50, and 5 critic updates were performed per generator iteration. We trained the models
for 10000 and 20000 generator iterations forD1 andD2 respectively. For all the models that rely on weight clipping, clipping
in the range [−0.01, 0.01] for D2 resulted in poor performance, so we modified the range to [−0.1, 0.1].

We used a mixture of 5 RBF kernels for MMD-GAN [6], and a mixture of 5 RQ kernels and gradient penalty (as defined
in [1]) for MMD-GAN-GP. For the CF-GAN variants, we used a single weighting distribution (Student-t and Gaussian for
D1 and D2 respectively). The gradient penalty trade-off parameter (λGP) for WGAN-GP was set to 1 for D1 as the value of
10 led to erratic performance.

B.2. Image Generation

CF-GAN Following [6], a decoder was also connected to the critic in CF-GAN to reconstruct the input to the critic. This
encourages the critic to learn a representation that has a high mutual information with the input. The auto-encoding objective
is optimized along with the discriminator, and the final objective is given by

inf
θ

sup
ψ

CFD2
ω(Pfφ(X),Pfφ(gθ(Z)))− λ1Eu∈X∪gθ(Z)

[
D(u, fdφ(fφ(u)))

]
, (28)

where fdφ is the decoder network, λ1 is the regularization parameter, and D is the discrepancy between the two data-points
(e.g., squared error, cross-entropy, etc.). Although the decoder is interesting from an auto-encoding perspective of the repre-
sentation learned by fφ, we found that the removal of the decoder did not impact the performance of the model; this can be
seen by the results of OCF-GAN-GP, which does not use a decoder network.

We also reduced the feasible set [6] of fφ, which amounts to an additive penalty of λ2 min (E[fφ(x)]− E[fφ(gθ(z))], 0).
We observed in our experiments that this led to improved stability of training, especially for the models that use weight
clipping to enforce Lipschitz condition. For more details, we refer the reader to [6].

Network and Hyperparameter Details We used DCGAN-like generator gθ and critic fφ architectures, same as [6] for all
models. Specifically, both gθ and dφ are fully convolutional networks with the following structures:

• gθ: upconv(256)→ bn→ relu→ upconv(128)→ bn→ relu→ upconv(64)→ bn→ relu→ upconv(c)→ tanh;

• fφ: conv(64) → leaky-relu(0.2) → conv(128) → bn → leaky-relu(0.2) → conv(256) → bn → leaky-relu(0.2) →
conv(m),

where conv, upconv, bn, relu, leaky-relu, and tanh refer to convolution, up-convolution, batch-normalization, ReLU,
LeakyReLU, and Tanh layers respectively. The decoder fφd (whenever used) is also a DCGAN-like decoder. The gener-
ator takes a k-dimensional Gaussian latent vector as the input and outputs a 32 × 32 image with c channels. The value of

k was set differently depending on the dataset: MNIST (10), CIFAR10 (32), STL10 (32), and CelebA (64). The output
dimensionality of the critic network (m) was set to 10 (MNIST) and 32 (CIFAR10, STL10, CelebA) for the MMD-GAN and
CF-GAN models and 1 for WGAN and WGAN-GP. The batch normalization layers in the critic were omitted for WGAN-GP
and OCF-GAN-GP (as suggested by [4]).

RMSProp optimizer was used with a learning rate of 5 × 10−5. All models were optimized with a batch size of 64 for
125000 generator iterations (50000 for MNIST) with 5 critic updates per generator iteration. We tested CF-GAN variants with
two weighting distributions: Gaussian (N) and Student-t (T) (with 2 degrees of freedom). We also conducted preliminary
experiments using Laplace (L) and Uniform (U) weighting distributions (see Table 1). For CF-GAN, we tested with 3 scale
parameters forN and T from the set {0.2, 0.5, 1}, and we report the best results. The trade-off parameter for the auto-encoder
penalty (λ1) and feasible-set penalty (λ2) were set to 8 and 16 respectively, as in [6]. For OCF-GAN-GP, the trade-off for
the gradient penalty was set to 10, same as WGAN-GP. The number of random frequencies k used for computing ECFD for
all CF-GAN models was set to 8. For MMD-GAN, we used a mixture of five RBF kernels kσ(x, x′) = exp

(
‖x−x′‖2

2σ2

)
with

different scales (σ) in Σ = {1, 2, 4, 8, 16} as in [6]. For MMD-GAN-GPL2, we used a mixture of rational quadratic kernels

kσ(x, x′) =
(

1 + ‖x−x′‖2
2α

)−α
with α in A = {0.2, 0.5, 1, 2, 5}; the trade-off parameters of the gradient and L2 penalties

were set according to [1].

Evaluation Metrics We compared the different models using three evaluation metrics: Fréchet Inception Distance
(FID) [8], Kernel Inception Distance (KID) [1], and Precision-Recall (PR) for Generative models [7]. All evaluation metrics
use features extracted from the pool3 layer (2048 dimensional) of an Inception network pre-trained on ImageNet, except
for MNIST, for which we used a LeNet5 as the feature extractor. FID fits Gaussian distributions to Inception features of the
real and fake images and then computes the Fréchet distance between the two Gaussians. On the other hand, KID computes
the MMD between the Inception features of the two distributions using a polynomial kernel of degree 3. This is equivalent
to comparing the first three moments of the two distributions.

Let {xri }ni=1 be samples from the data distribution Pr and {xgi }mi=1 be samples from the GAN generator distribution Qθ.
Let {zri }ni=1 and {zgi }mi=1 be the feature vectors extracted from the Inception network for {xri }ni=1 and {xgi }mi=1 respectively.
The FID and KID are then given by

FID(Pr,Qθ) =||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2), (29)

KID(Pr,Qθ) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

[
κ(zri , z

r
j)
]

+
1

m(m− 1)

m∑
i=1

m∑
j=1,j 6=i

[
κ(zgi , z

g
j)
]

(30)

− 2

mn

n∑
i=1

m∑
j=1

[
κ(zri , z

g
j)
]
,

where (µr, Σr) and (µg , Σg) are the sample mean & covariance matrix of the inception features of the real and generated
data distributions, and κ is a polynomial kernel of degree 3, i.e.,

κ(x, y) =

(
1

m
〈x, y〉+ 1

)3

, (31)

where m is the dimensionality of the feature vectors.
Both FID and KID give single-value scores, and PR gives a two-dimensional score which disentangles the quality of

generated samples from the coverage of the data distribution. For more details about PR, we refer the reader to [7]. In brief,
PR is defined by a pair F8 (recall) and F1/8 (precision), which represent the coverage and sample quality respectively [7].

We used 50000 (10000 for PR) random samples from the different GANs to compute the FID and KID scores. For MNIST
and CIFAR10, we compared against the standard test sets, while for CelebA and STL10, we compared against 50000 random
images sampled from the dataset. Following [1], we computed FID using 10 bootstrap resamplings and KID by sampling
1000 elements (without replacement) 100 times.

0 200 400 600 800 1000

Dimensions

0.5

0.6

0.7

0.8

0.9

1.0

1
−
P

(T
y
p

e
I

er
ro

r)

P = Q

ECFD

ECFD-Smooth

OECFD

OECFD-Smooth

Figure 2: Probability of correctly accepting the null hypothesis P = Q for various numbers of dimensions and different
variants of ECFD.

C. Additional Results
Fig. 2 shows the probability of accepting the null hypothesis P = Q when it is indeed correct for different two sample

tests based on ECFs. As mentioned in the main text, the optimization of the parameters of the weighting distribution does
not hamper the ability of the test to correctly recognize the cases that P = Q.

Table 1 shows the FID and KID scores for various models for the CIFAR10, STL10, and CelebA datasets, including results
for the smoothed version of ECFD and Laplace (L) & Uniform (U) weighting distributions. The FID and KID scores for the
MNIST dataset are shown in Table 2.

Figures 3, 4, and 5 show random images generated by different GAN models for CIFAR10, CelebA, and STL10 datasets
respectively. The images generated by models that do not use gradient penalty (WGAN and MMD-GAN) are less sharp
and have more artifacts compared to their GP counterparts. Fig. 6 shows random images generated from OCF-GAN-GP(N)
trained on the MNIST dataset with a different number of random frequencies (k). It is interesting to note that the change in
sample quality is imperceptible even when k = 1. Figure 7 shows additional samples from OCF-GAN-GP with a ResNet
generator trained on CelebA 128× 128.

(a) WGAN (b) WGAN-GP

(c) MMD-GAN (d) MMD-GAN-GP

(e) OCF-GAN-GP (f) CIFAR10 Test Set

Figure 3: Image samples from the different models for the CIFAR10 dataset.

(a) WGAN (b) WGAN-GP

(c) MMD-GAN (d) MMD-GAN-GP

(e) OCF-GAN-GP (f) CelebA Real Samples

Figure 4: Image samples from the different models for the CelebA dataset.

(a) WGAN (b) WGAN-GP

(c) MMD-GAN (d) MMD-GAN-GP

(e) OCF-GAN-GP (f) STL10 Test Set

Figure 5: Image samples from the different models for the STL10 dataset.

Table 1: FID and KID (×103) scores (lower is better) for CIFAR10, STL10, and CelebA datasets. Results are averaged over
5 random runs wherever the standard deviation is indicated in parentheses.

Model Kernel/
CIFAR10 STL10 CelebA

Weight FID KID FID KID FID KID

WGAN – 44.11 (1.16) 25 (1) 38.61 (0.43) 23 (1) 17.85 (0.69) 12 (1)
WGAN-GP – 35.91 (0.30) 19 (1) 27.85 (0.81) 15 (1) 10.03 (0.37) 6 (1)
MMD-GAN 5-RBF 41.28 (0.54) 23 (1) 35.76 (0.54) 21 (1) 18.48 (1.60) 12 (1)
MMD-GAN-GP-L2 5-RQ 38.88 (1.35) 21 (1) 31.67 (0.94) 17 (1) 13.22 (1.30) 8 (1)

CF-GAN
N(σ=0.5) 39.81 (0.93) 23 (1) 33.54 (1.11) 19 (1) 13.71 (0.50) 9 (1)
T(σ=1) 41.41 (0.64) 22 (1) 35.64 (0.44) 20 (1) 16.92 (1.29) 11 (1)

OCF-GAN

N(σ̂) 38.47 (1.00) 20 (1) 32.51 (0.87) 19 (1) 14.91 (0.83) 9 (1)
T(σ̂) 37.96 (0.74) 20 (1) 31.03 (0.82) 17 (1) 13.73 (0.56) 8 (1)
L(σ̂) 36.90 20 32.09 18 14.96 10
U(σ̂) 37.79 21 31.80 18 14.94 10

CF-GAN-Smooth N(σ=0.5) 41.17 24 32.98 19 13.42 9
OCF-GAN-Smooth N(σ) 38.97 21 32.60 18 14.97 9

OCF-GAN-GP

N(σ̂) 33.08 (0.26) 17 (1) 26.16 (0.64) 14 (1) 9.39 (0.25) 5 (1)
T(σ̂) 34.33 (0.77) 18 (1) 26.86 (0.38) 15 (1) 9.61 (0.39) 6 (1)
L(σ̂) 36.06 19 29.31 16 11.65 7
U(σ̂) 35.14 18 27.62 15 10.29 6

Table 2: FID and KID scores (lower is better) achieved by the various models for the MNIST dataset. Results are averaged
over 5 random runs and the standard deviation is indicated in parentheses.

Model Kernel/Weight
MNIST

FID KID ×103

WGAN – 1.69 (0.09) 20 (2)
WGAN-GP – 0.26 (0.02) 2 (1)
MMD-GAN 5-RBF 0.68 (0.18) 10 (5)
MMD-GAN-GPL2 5-RQ 0.51 (0.04) 6 (2)

CF-GAN
N(σ=1) 0.98 (0.33) 16 (10)
T(σ=0.5) 0.85 (0.19) 12 (4)

OCF-GAN
N(σ̂) 0.60 (0.12) 7 (3)
T(σ̂) 0.78 (0.11) 9 (1)

OCF-GAN-GP
N(σ̂) 0.35 (0.02) 3 (1)
T(σ̂) 0.48 (0.06) 6 (1)

(a) k = 1 (b) k = 4

(c) k = 8 (d) k = 16

(e) k = 32 (f) k = 64

Figure 6: Image samples from OCF-GAN-GP for the MNIST dataset trained using different numbers of random frequencies
(k).

Figure 7: Image samples for the 128× 128 CelebA dataset generated by OCF-GAN-GP with a ResNet generator.

References
[1] Mikolaj Binkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD GANs. In ICLR, 2018. 5, 6
[2] Harald Cramér and Herman Wold. Some theorems on distribution functions. Journal of the London Mathematical Society, 1(4):290–

294, 1936. 4
[3] Herbert Federer. Geometric measure theory. Springer, 2014. 2
[4] Ishaan Gulrajani, Faruk Ahmed, Martı́n Arjovsky, Vincent Dumoulin, and Aaron C. Courville. Improved training of Wasserstein

GANs. In NIPS, 2017. 6
[5] Achim Klenke. Probability theory: a comprehensive course. Springer Science & Business Media, 2013. 3
[6] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD GAN: Towards deeper understanding of

moment matching network. In NIPS, 2017. 5, 6
[7] Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing generative models via precision and

recall. In NeurIPS, pages 5228–5237, 2018. 6
[8] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training

GANs. In NIPS, 2016. 6
[9] Manzil Zaheer, Chun-Liang Li, Barnabás Póczos, and Ruslan Salakhutdinov. GAN connoisseur : Can GANs learn simple 1D para-

metric distributions? 2018. 5

