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1. Geometric-Preserving Translation

In this section we provide qualitative results that sup-
ports our claims which were provided in the ablation
study (see Geometric-Preserving Translation Network in
the ablation study). More specifically, Figure 2 showcases
the geometric-preserving quality that the translation net-
work has under our proposed two-flow training scheme (i.e
jointly training T ◦R and R ◦ T ). Additionally, in Figure 3
we show that training T and R such that the translation task
is performed first (R ◦ T ), yields poorly reconstructed im-
ages. Finally, we show in Figure 4 that in the registration
first training flow (i.e T ◦R), the translation network super-
sedes the registration network by performing the translation
as well the registration, while the registration network de-
generates to performing minor spatial transformation.

2. CycleGAN As Geometry Preserving Trans-
lator

In the paper (Section 5.1 - Quantitative Evaluation), we
used CycleGAN [6] in order to translate the input image
Ia ∈ A onto modality B. This in turn, allowed us to extract
SIFT [4] features from the generated image and the target
image Ib ∈ B, and later apply feature matching algorithms
in order to estimate the spatial correspondence between the
images. One of our claims was that CycleGAN is expected
to be geometry preserving because it isn’t explicitly trained
to match the ground-truth data. We show a sample result in
Figure 7 where clearly the translated image share the same
coordinate system with the input image Ia (see left images
in Figure 7a and Figure 7b). Furthermore, extracting the
SIFT features from the generated image allows better fea-
ture matching than extracting the SIFT features from the in-
put image Ia. To see this, we show the top-10 matched fea-
tures between Ia and Ib (Figure 7a) and the top-10 matched
features between the generated image and Ib (Figure 7b).

3. Qualitative Evaluation - Additional Results

In this section we provide further qualitative results
for Figure 4 in the paper. Specifically, we show addi-

Name Input Output size (H ×W × C) Comments

Ia - 288× 384× 3 Input
Ib - 288× 384× 1 Input

Encoder
Conv1 Ia � Ib 288× 384× 32 3× 3 Conv/Stride 1
LR1 Conv1 288× 384× 32 Leaky ReLU
Res1 LR1 288× 384× 32 Residual Block
Pool1 Res1 144× 192× 32 Max Pooling
Conv2 Pool1 144× 192× 64 3× 3 Conv/Stride 1
LR2 Conv2 144× 192× 64 Leaky ReLU
Res2 LR2 144× 192× 64 Residual Block
Pool2 Res2 72× 96× 64 Max Pooling
... ... ... ...
Conv6 Pool5 4× 6× 64 3× 3 Conv/Stride 1
LR6 Conv6 4× 6× 64 Leaky ReLU
Res6 LR6 4× 6× 64 Residual Block
Pool6 Res6 4× 6× 64 Max Pooling
Conv7 Pool6 4× 6× 64 3× 3 Conv/Stride 1
LR7 Conv7 4× 6× 64 Leaky ReLU
Res7 LR7 4× 6× 64 Residual Block

Decoder
UP1 Res7 9× 12× 64 2× Up Sample
Conv8 Up1 � Res6 9× 12× 64 3× 3 Conv/Stride 1
LR8 Conv8 9× 12× 64 Leaky ReLU
... ... ... ...
UP6 LR12 288× 384× 32 2× Up Sample
Conv13 Up6 � Res1 288× 384× 32 3× 3 Conv/Stride 1
LR13 Conv13 288× 384× 32 Leaky ReLU
Res13 LR13 288× 384× 32 Residual Block
Conv14 Res13 288× 384× 32 1× 1 Conv/Stride 0
LR14 Conv14 288× 384× 32 Leaky ReLU
Conv15 LR14 288× 384× 2 3× 3 Conv/Stride 1

Table 1: Detailed Description of RΦ. We omitted full de-
tails due to space constraint. All Leaky ReLU layers are
with negative slope α = 0.2. The output layer Conv15
is initialized with weight distribution of N (0, 0.0001). All
other layers are initialized with Kaiming [2] initialization
method. We use residual block in the encoder-path and out-
put path, which are based on the implementation in [3]. We
use � to represent the channel-wise concatenation opera-
tion.

tional visual results on the registration between RGB and
Depth modalities (Figure 8), and between RGB and Ther-
mal modalities (Figure 9).
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Figure 1: RΦ - Deformation Field Generation Network.

4. Loss Ablation - Visual Results
In the paper we claimed that training the registration net-

work R on both the reconstruction loss and the cGAN loss
(i.e Lrecon and LcGAN ) provides smooth and accurate re-
sults. Specifically, we claimed that the cGAN loss is neces-
sary in order to produce smooth spatial transformation. In
Figure 10, we show the effect of optimizing R with respect
to each loss individually. As can be seen, when R is trained
with respect to the L1 loss, the registration network outputs
results which are very distinct but not smooth. However,
when we optimize the registration network with respect to
the adversarial loss, then we achieve much smoother results.

5. Registration Network Architecture
Recall that our registration network R consists of a re-

sampler RS , and a deformation field generation network
RΦ. The network RΦ is UNET-based [5] with residual con-
nections [1] in the encoder and output path (see illustration
in Figure 1). For full description of the network, please refer
to Table 1.

6. NCC As A Metric
As claimed in the paper, using Normalized Cross Corre-

lation (NCC) as a similarity measure to optimize our regis-
tration network R produces less accurate registration. Fur-
ther, we claimed that in some-cases, the registered image
is noisy and contains many artifacts. We show sample fail-
ure cases, when our network R is optimized with respect to
NCC only. The results are shown in Figure 5.

7. Translation Network Capacity
In this section, we show that there must be a balance

between the capacity of the translation network T , and the
registration network R. In particular, the capacity of the
network T refers to the number of layers or the number of
filters that are used in the network. To test how changing the
capacity of T affects the registration network R, we train T
in three different configurations. Recall, the network T is
an encoder-decoder network with residual blocks applied
to the encoded features. We use three different architec-
tures for T , where each one has different number of residual
blocks. Specifically, we use 9 residual blocks (resnet 9), 6

residual blocks (resnet 6) and 3 residual blocks (resnet 3).
As can be seen from Figure 6, the registration accuracy is
degrading when T ’s capacity is increased.
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Input A T (Ia) - Translated Input B

Figure 2: Geometric Preserving Translation Network - Visual Results. On the left are the input RGB images, on the right
the target IR images and in the middle are the results of applying only the translation network T on the RGB image. We
overlay the silhouette of the salient object in the RGB image on top of all of the images to emphasize the preservation of the
geometry during the translation.
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Figure 3: Translation First - Sample Results. We show
real samples on the left and the generated samples using
R ◦ T on the right. As can be seen, the registration network
R takes on the role of a translation network, resulting in low
quality images.

Input A Registered Translated Input B

Figure 4: Registration First - Sample Results. In all im-
ages we place the silhouette of the salient object in the real
sample from modality B on top of the images. As can be
seen, the registration network applies only minor spatial
transformation on the input image (see Input A and Reg-
istered columns), while most of the registration task is done
implicitly by the translation network (see Translated and In-
put B). Please note that the third column (Translated), rep-
resent the output of T ◦R(Ia, Ib).

Figure 5: NCC Failure Cases. In some cases, optimizing
the registration network with respect to normalized cross
produces artifacts.
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Figure 6: Translation Network Capacity vs Registration
Accuracy. As can be seen, increasing the number of layers
in the translation network T , negatively affects the registra-
tion accuracy of R.



(a) Matched SIFT Features Of Input A (left) and Input B (right).

(b) Matched SIFT Features Of CycleGAN’s Output (left) and Input B (right).

Figure 7: Top 10 Matched SIFT Features. We show the matched SIFT features (a) between Ia and Ib and (b) the translated
image (using CycleGAN as a translator) and Ib. As shown in the figure, CycleGAN is geometry preserving (see the left
images in (a) and (b)). However, using CycleGAN yields less accurate translation, as suggested by (b). In particular, we see
that the translation is not accurate in the salient object, thus most of the matched features in (b) are part of the background.



Input A Input B Registered Deform. Field Before After

Figure 8: Image registration between RGB and Depth modalities. Further results for Figure 4a in the Paper.



Input A Input B Registered Deform. Field Before After

Figure 9: Image registration between RGB and IR modalities. Further results for Figure 4b in the Paper.

GAN Only L1 Only

Figure 10: Loss ablation - visual results. On the left are the registration results when the registration network R is trained
only with respect to the adversarial GAN loss. On the right are the registration results when R is trained only with an L1
loss.


