
Single-Stage Semantic Segmentation from Image Labels
– Supplemental Material –

Nikita Araslanov Stefan Roth
Department of Computer Science, TU Darmstadt

A. On Training Stages

Table 4 provides a concise overview of previous work on
semantic segmentation from image-level labels. As an im-
portant practical consideration, we highlight the number of
stages used by each method. In this work, we refer to one
stage as learning an independent set of model parameters
with intermediate results saved offline as input to the next
stage. For example, the approach by Ahn et al. [3] com-
prises three stages: (1) extracting CAMs as seed masks; (2)
learning a pixel affinity network to refine these masks; and
(3) training a segmentation network on the pseudo labels
generated by affinity propagation. Note that three meth-
ods [26, 55, 56] also use multiple training cycles (given in
parentheses) of the same model, which essentially acts as
a multiplier w.r.t. the total number of stages. Finally, we
note if a method relies on saliency detection, extra data, or
previous frameworks. We observe that predominantly early
single-stage methods stand in contrast to the more complex
recent multi-stage pipelines. Our approach is single stage
and relies neither on previous frameworks, nor on saliency
supervision.1

B. Loss Functions

In this section, we take a detailed look at the employed
loss functions. Since we compute the classification scores
differently from previous work, we also provide additional
analysis to justify the form of this novel formulation.

B.1. Classification loss

We use the multi-label soft-margin loss function used
in previous work [3, 57] as the classification loss, Lcls.
Given model predictions y ∈ RC (cf . Eq. (3) and Eq. (5);
see also below) and a binary vector of ground-truth labels
z ∈ {0, 1}C , we compute the multi-label soft-margin loss

1The background cues provided by saliency detection methods give a
substantial advantage, since 63% of 10K train images (VOC+SBD) have
only one class.

Method Extras # of Stages PSR

MIL-FCN ICLR ’15 [40] – 1 7
MIL-LSE CVPR ’15 [41] – 1 7
EM ICCV ’15 [38] – 1 7
TransferNet CVPR ’16 [17] – 1 7
SEC ECCV ’16 [28] S [46] 2 7
DCSP ECCV ’17 [5] S [35] 1 7
AdvErasing CVPR ’17 [55] S [53] 2 (×3) 3
WebCrawl CVPR ’17 [18] D 1 7
CRF-RNN CVPR ’17 [43] – 1 7
STC TPAMI ’17 [56] D, S [25] 3 (×3) 3
MCOF CVPR ’18 [54] S [54] 2 7
RDC CVPR ’18 [57] S [59] 3 3
DSRG CVPR ’18 [24] S [53] 2 3
Guided-Att CVPR ’18 [32] SEC [28] 1+2 7
SalientInstances ECCV ’18 [14] S [13] 2 3
Affinity CVPR ’18 [3] – 3 3
SeeNet NIPS ’18 [21] S [20] 2 3
FickleNet CVPR ’19 [30] S, DSRG [24] 1+3 3
JointSaliency ICCV ’19 [60] S 1 7
Frame-to-Frame ICCV ’19 [31] D, S [19] 2 3
SSDD ICCV ’19 [45] Affinity [3] 2+3 3
IRN CVPR ’19 [2] – 3 3
Coarse-to-Fine TIP ’20 [26] GrabCut [42] 2 (×5) 3

Ours – 1 7

Table 4. Summary of related work. We analyse the related meth-
ods w.r.t. external input (“Extras”), such as saliency detection (S),
additional data (D), or their reliance on previous work. We count
the number of training stages in the method and note in parenthe-
ses if the method uses multiple training cycles of the same models.
We also mark methods that additionally train a standalone segmen-
tation network in a (pseudo) fully supervised regime to refine the
masks (PSR).

[39] as

Lcls(y, z) = − 1

C

C∑
c=1

zc log

(
1

1 + e−yc

)
+

+ (1− zc) log

(
e−yc

1 + e−yc

)
. (12)

As illustrated in Fig. 9, the loss function encourages yc < 0
for negative classes (i.e. when zc = 0) and yc > 0 for pos-
itive classes (i.e. when zc = 1). This observation will be
useful for our discussion below.



−1

0

L
cl

s,
c

1

2

3

4

5

6

−4 −2 0
yc

2 4

Pos. Classes, zc = 1
Neg. Classes, zc = 0

Figure 9. Soft-margin classification loss. The loss encourages
yc > 0 for positive classes and yc < 0 for negative classes.
The function exhibits saturation regions: as yc → ∞ for positive
classes, the associated loss (shown in blue) approaches 0. Con-
versely, the loss for negative classes, shown in red, approaches 0,
as yc → −∞.

Recall from Eq. (3) and Eq. (5) that we define our clas-
sification score yc as

yc = ynGWP
c + ysize-focal

c . (13)

For convenience, we re-iterate the definition of the two
terms, the normalised Global Weighted Pooling

ynGWP
c =

∑
i,j mc,i,jyc,i,j

ε+
∑

i′,j′ mc,i′,j′
(14)

and the focal penalty

ysize-focal
c = (1− m̄c)

p log(λ+ m̄c), (15)

with m̄c =
1

hw

∑
i,j

mc,i,j . (16)

Note that yc,i,j in Eq. (14) refers to pixel site (i, j) on the
score map of class c, whereas yc in Eq. (13) is the aggre-
gated score for class c. We compute the class confidence
m:,i,j for site (i, j) using a softmax on y:,i,j , where we
include an additional background channel y0,i,j . We fix
y0,:,: ≡ 1 throughout our experiments.

The use of hyperparameter ε > 0 in the definition of
Eq. (14) may look rather arbitrary and redundant at first. In
the analysis below, we show that in fact it serves multiple
purposes:

1. Numerical stability. First, using ε > 0 pre-
vents division by zero for saturated scores, i.e. where∑

i′,j′ mc,i′,j′ = 0 for some c in the denominator

of Eq. (14), which can happen (approximately) in the
course of training for negative classes.

Secondly, ε > 0 resolves discontinuity issues. Observe
that

lim
mc,:,:→0

∑
i,j mc,i,jyc,i,j

ε+
∑

i′,j′ mc,i′,j′
= 0, (17)

i.e. ynGWP
c ≈ 0 for negative classes and positive ε.

However, with ε = 0 the nGWP term in Eq. (14) is
not continuous at 0, which in practice may result in
unstable training when

∑
i,j mc,i,j ≈ 0 for some c.

One exception, unlikely to occur in practice, is when
yc,i,j = yc,k,l = d for all (i, j) and (k, l). Then,

lim
mc,:,:→0

∑
i,j mc,i,jyc,i,j∑
i′,j′ mc,i′,j′

=

= lim
mc,:,:→0

d
∑

i,j mc,i,j∑
i′,j′ mc,i′,j′

= d. (18)

In the case of more practical relevance, i.e. when
yc,i,j 6= yc,k,l for some (i, j) 6= (k, l), the limit does
not exist, as the following lemma shows. With some
abuse of notation, we here write mi and yi to refer to
the confidence and the score values of class c at pixel
site i, respectively.

Lemma 1. Let ε = 0 in Eq. (14) and suppose there
exist k and l such that yk 6= yl. Then, the correspond-
ing limit

lim
mi→0,∀i

∑
imiyi∑
i′ mi′

(19)

does not exist.

Proof. Let mk(t) = t and mi(t) = 0 for i 6= k. Then,

lim
mi→0,∀i

∑
imiyi∑
i′ mi′

= lim
t→0

tyk
t

= yk.

On the other hand, if we let ml(t) = t and mi(t) = 0
for i 6= l, we obtain

lim
mi→0,∀i

∑
imiyi∑
i′ mi′

= lim
t→0

tyl
t

= yl.

Since yk 6= yl by our assumption, we have now
found two paths of the multivariable limit in Eq. (19),
which evaluate to different values. Therefore, the limit
in Eq. (19) is not unique, i.e. does not exist ([64],
Ch. 14.2).

2. Emphasis on the focal penalty. For negative classes,
it is not sensible to give meaningful relative weightings



of the pixels for nGWP in Eq. (14); we seek such a
relative weighting of different pixels only for positive
classes. At training time we would thus like to min-
imise the class scores for negative classes uniformly
for all pixel sites. Empirically, we observed that with
ε > 0 the focal penalty term, which encourages this
behaviour, contributes more significantly to the score
of the negative classes than the nGWP term, which re-
lies on relative pixel weighting.

3. Negative class debiasing. Negative classes dominate
in the label set of Pascal VOC, i.e. each image sample
depicts only few categories. The gradient of the loss
function from Eq. (12) vanishes for positive classes
with yc → ∞ and negative classes with yc → −∞.
However, in our preliminary experiments with GAP-
CAM, and later with nGWP with ε = 0 in Eq. (14), we
observed that further iterations continued to decrease
the scores for the negative classes in regions in which
the loss is near-saturated, while the yc of positive
classes increased only marginally. This may indicate
a strong inductive bias towards negative classes, which
might be undesirable for real-world deployment.

Assuming ε > 0 and
∑

i′,j′ mc,i′,j′ 6= 0, we observe
that, ∑

i,j mc,i,jyc,i,j

ε+
∑

i′,j′ mc,i′,j′
>

∑
i,j mc,i,jyc,i,j∑
i′,j′ mc,i′,j′

(20)

when yc,:,: < 0, which is the case for saturated
negative classes. Recall further that the use of the
constant background score (fixed to 1) implies that
mc,i,j → 0 as yc,i,j → −∞. Since the RHS is
the convex combination of yc,i,j’s, its minimum is
min({yc,i,j}i,j). Therefore, the RHS is unbounded
from below as yc,i,j → −∞, hence the yc,i,j keep get-
ting pushed down for negative classes. By contrast,
the LHS has a defined limit of 0 as mc,i,j → 0 (see
Eq. (17)), which is undesirable as the score for a nega-
tive class. This is because a finite (i.e. larger) mc,i,j

yields a negative, thus smaller value of the classifi-
cation score, which we are trying to minimise in this
case. Therefore, ε > 0 will encourage SGD to pull
the negative scores away from the saturation areas by
pushing the

∑
i,j mc,i,j away from zero.

In summary, for negative classes ε improves numerical
stability and emphasises the focal penalty while leverag-
ing nGWP to alleviate the negative class bias. For positive
classes, the effect of ε is negligible, since ε �

∑
i,j mc,i,j

in this case. We set ε = 1 in all our experiments.

B.2. Segmentation loss

For the segmentation loss w.r.t. the pseudo ground truth,
we use a weighted cross-entropy defined for each pixel site

(i, j) as
Lseg,i,j = −qc logmc,i,j , (21)

where c is the label in the pseudo ground-truth mask. The
balancing class weight qc accounts for the fact that the
pseudo ground truth may contain a different amount of pixel
supervision for each class:

qc =
Mb,total −Mb,c

1 +Mb,total
, (22)

whereMb,total andMb,c are the total and class-specific num-
ber of pixels for supervision in the pseudo ground-truth
mask, respectively; b indexes the sample in a batch; and
1 in the denominator serves for numerical stability. The ag-
gregated segmentation lossLseg is a weighted mean over the
samples in a batch, i.e.

Lseg =
1∑

b′Mb′,total

1

hw

∑
b

Mb,total

∑
i,j

Lseg,i,j . (23)

C. Quantitative Analysis
We list the per-class segmentation accuracy on Pascal

VOC validation and training in Tables 5 and 6. We first
observe that none of previous methods, including the state
of the art [3, 30, 45], outperforms other pipelines on all
class categories. For example FickleNet [30], based on a
ResNet-101 backbone, reaches top segmentation accuracy
only for classes “bottle”, “bus”, “car”, and “tv”. SSDD [45]
has the highest mean IoU, but is inferior to other methods
on 10 out of 21 classes. Our single-stage method compares
favourably even to the multi-stage approaches that rely on
saliency supervision or additional data. For example, we
improve over the more complex AffinityNet [3] that trains
a deep network to predict pixel-level affinity distance from
CAMs and then further trains a segmentation network in
a (pseudo) fully supervised regime. The best single-stage
method from previous work, CRF-RNN [43], trained using
only the image-level annotation we consider in this work,
reaches 52.8% and 53.7% IoU on the validation and test
sets. We substantially boost this result, by 9.9% and 10.6%
points, respectively, and attain new a state-of-the-art mask
accuracy overall on classes “bike”, “person”, and “plant”.

D. Ablation Study: PAMR Iterations
We empirically verify the number of iterations used in

PAMR, which we set to 10 in our main ablation study. Ta-
ble 7 reports the results with higher and fewer number of
iterations. We observe that using only few PAMR iterations
decreases the mask quality. On the other hand, the benefits
of PAMR diminishes if we increase the number of itera-
tions further. 10 iterations appears to strike a good balance
between the computational expense and the obtained seg-
mentation accuracy.



Method bg aero bike bird boat bot. bus car cat chair cow tab. dog horse mbk per. plant sheep sofa train tv mean

Multi stage

SEC∗ [28] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
AdvErasing∗ [55] 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0
RDC∗ [57] 89.4 85.6 34.6 75.8 61.9 65.8 67.1 73.3 80.2 15.1 69.9 8.1 75.0 68.4 70.9 71.5 32.6 74.9 24.8 73.2 50.8 60.4
FickleNet∗ [30] 88.1 75.0 31.3 75.7 48.8 60.1 80.0 72.7 79.6 25.7 67.3 42.2 77.1 67.5 65.4 69.2 42.2 74.1 34.2 53.7 54.7 61.2
AffinityNet [3] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.5 68.1 51.6 61.7
FickleNet∗,† [30] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
SSDD [45] 89.0 62.5 28.9 83.7 52.9 59.5 77.6 73.7 87.0 34.0 83.7 47.6 84.1 77.0 73.9 69.6 29.8 84.0 43.2 68.0 53.4 64.9

Single stage

TransferNet∗ [17] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1
CRF-RNN [43] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8
WebCrawl∗ [18] 87.0 69.3 32.2 70.2 31.2 58.4 73.6 68.5 76.5 26.8 63.8 29.1 73.5 69.5 66.5 70.4 46.8 72.1 27.3 57.4 50.2 58.1

Ours 87.0 63.4 33.1 64.5 47.4 63.2 70.2 59.2 76.9 27.3 67.1 29.8 77.0 67.2 64.0 72.4 46.5 67.6 38.1 68.2 63.6 59.7
Ours + CRF 88.7 70.4 35.1 75.7 51.9 65.8 71.9 64.2 81.1 30.8 73.3 28.1 81.6 69.1 62.6 74.8 48.6 71.0 40.1 68.5 64.3 62.7
Methods marked with (∗) use saliency detectors or additional data, or both (see Sec. 2). (†) denotes a ResNet-101 backbone.

Table 5. Per-class IoU (%) comparison on Pascal VOC 2012, validation set.

Method bg aero bike bird boat bot. bus car cat chair cow tab. dog horse mbk per. plant sheep sofa train tv mean

Multi stage

SEC∗ [28] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
FickleNet∗ [30] 88.5 73.7 32.4 72.0 38.0 62.8 77.4 74.4 78.6 22.3 67.5 50.2 74.5 72.1 77.3 68.8 52.5 74.8 41.5 45.5 55.4 61.9
AffinityNet [3] 89.1 70.6 31.6 77.2 42.2 68.9 79.1 66.5 74.9 29.6 68.7 56.1 82.1 64.8 78.6 73.5 50.8 70.7 47.7 63.9 51.1 63.7
FickleNet∗,† [30] 89.8 78.3 34.1 73.4 41.2 67.2 81.0 77.3 81.2 29.1 72.4 47.2 76.8 76.5 76.1 72.9 56.5 82.9 43.6 48.7 64.7 65.3
SSDD [45] 89.5 71.8 31.4 79.3 47.3 64.2 79.9 74.6 84.9 30.8 73.5 58.2 82.7 73.4 76.4 69.9 37.4 80.5 54.5 65.7 50.3 65.5

Single stage

TransferNet∗ [17] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2
CRF-RNN [43] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.3 60.4 42.8 42.2 50.6 53.7
WebCrawl∗ [18] 87.2 63.9 32.8 72.4 26.7 64.0 72.1 70.5 77.8 23.9 63.6 32.1 77.2 75.3 76.2 71.5 45.0 68.8 35.5 46.2 49.3 58.7

Ours 87.4 63.6 34.7 59.9 40.1 63.3 70.2 56.5 71.4 29.0 71.0 38.3 76.7 73.2 70.5 71.6 55.0 66.3 47.0 63.5 60.3 60.5
Ours + CRF 89.2 73.4 37.3 68.3 45.8 68.0 72.7 64.1 74.1 32.9 74.9 39.2 81.3 74.6 72.6 75.4 58.1 71.0 48.7 67.7 60.1 64.3
Methods marked with (∗) use saliency detectors or additional data, or both (see Sec. 2). (†) denotes a ResNet-101 backbone.

Table 6. Per-class IoU (%) comparison on Pascal VOC 2012, test set.

Number of iterations IoU IoU w/ CRF

5 59.1 59.0
10 59.4 62.2
15 59.0 61.6

Table 7. Effect of the iteration number in PAMR. We train our
model with the iteration number in the PAMR module fixed to a
pre-defined value. We report the IoU (%) with and without CRF
refinement on Pascal VOC validation.

Additionally, we visualise semantic masks produced at
intermediate iterations from our PAMR module in Fig. 10.
The initial masks produced by our segmentation model
in the early stages of training exhibit coarse boundaries.
PAMR mitigates this shortcoming by virtue of exploiting vi-
sual cues with pixel-adaptive convolutions. Our model then
uses the revised masks to generate pseudo ground-truth for
self-supervised segmentation.

E. Pseudo Labels

The last-stage training of a segmentation network is ag-
nostic to the process of pseudo-label generation; it is the
quality of the pseudo labels and the ease of obtaining them
that matters.

Although we intentionally omitted the common practice
of training a standalone network on our pseudo labels, we
show that, in fact, we can achieve state-of-the-art results in
a multi-stage setting as well.

We use our pseudo labels on the train split of Pas-
cal VOC (see Table 2) and train a segmentation model
DeepLabv3+ [8] in a fully supervised fashion. Table 8
summarises the results. We observe that the resulting sim-
ple two-stage pipeline outperforms other multi-stage frame-
works under the same image-level supervision. Remark-
ably, our method even attains the mask accuracy of Frame-
to-Frame [31], which not only utilises saliency detectors,
but also relies on additional data (15K extra) and sophisti-



Method Backbone Supervision val test

Fully supervised

WideResNet38 [58] F 80.8 82.5
DeepLabv3+ [8] Xception-65 [9] F – 87.8

Multi stage + Saliency

FickleNet [30] ResNet-101 S 64.9 65.3

Frame-to-Frame [31] VGG-16 S,D 63.9 65.0
ResNet-101 66.5 67.4

Single stage + Saliency

JointSaliency [60] DenseNet-169 [22] S,D 63.3 64.3

Multi stage

AffinityNet [3] WideResNet-38 I 61.7 63.7
IRN [2] ResNet-50 I 63.5 64.8
SSDD [45] WideResNet-38 I 64.9 65.5

Two stage

Ours + DeepLabv3+ ResNet-101 I 65.7 66.6
Ours + DeepLabv3+ Xception-65 I 66.8 67.3

Table 8. Mean IoU (%) on Pascal VOC validation and test
sets. We train DeepLabv3+ in a fully supervised regime on pseudo
ground truth obtained from our method (with CRF refinement).
Under equivalent level of supervision, our two-stage approach out-
performs the previous state of the art, trained in three or more
stages and performs on par with other multi-stage frameworks re-
lying on additional data and saliency detection [31].

Baseline (CAM) Ours

Backbone w/o CRF + CRF w/o CRF + CRF

VGG16 41.2 38.0 55.9 56.6
ResNet-50 43.7 43.5 60.4 64.1
ResNet-101 46.2 45.2 62.9 66.2
WideResNet-38 44.9 45.2 63.1 65.8

Mean 44.0 43.0 60.6 63.2

Table 9. Segmentation quality (IoU, %) on Pascal VOC valida-
tion. We use ground-truth image-level labels to remove false pos-
itive classes from the masks to decouple the segmentation quality
from the accuracy of the classifier.

cated network models (e.g. PWC-Net [46], FickleNet [30]).

F. Exchanging Backbones
Here we confirm that our segmentation method gener-

alises well to other backbone architectures. We choose
VGG16 [47], ResNet-50 and ResNet-101 [16] – all widely
used network architectures – as a drop-in alternative to
WideResNet-38 [58], which we use for all other experi-
ments. We train these models on 448 × 448 image crops
using the same data augmentation as before. We use multi-
scale inference with image sides varying by factors 1.0,
0.75, 1.25, 1.5. These scales are slightly different from the
ones we used in the main experiments, which we found to

slightly improve the IoU on average. We re-evaluate our
WideResNet-38 on the same scales to make the results from
different backbones compatible. Motivated to measure the
segmentation accuracy alone, we report validation IoU on
the masks with the false positives removed using ground-
truth labels. Table 9 summarises the results.

The results show a clear improvement over the CAM
baseline for all backbones: the average improvement with-
out CRF post-processing is 16.6% IoU and 20.2% IoU with
CRF refinement.

References
[64] James Stewart. Calculus: Early transcendentals. Thomson

Higher Education, Belmont, CA, 6th edition, 2012. 2



Prediction Iteration 1 Iteration 3 Iteration 5 Iteration 7 Iteration 10 Ground Truth

Figure 10. Visualisation of PAMR iterations. The initial model predictions suffer from local inconsistency: mask boundaries do not align
with available visual cues. Our PAMR module iteratively revises the masks to alleviate this problem. Our model uses the mask from the
last iteration for self-supervision.


