

Supplementary: Single-step Adversarial training with Dropout Scheduling

Vivek B.S. and R. Venkatesh Babu
 Video Analytics Lab, Department of Computational and Data Sciences
 Indian Institute of Science, Bangalore, India

Contents

- Section 1: Network architecture.
- Section 2: Adversarial training and Attack generation methods.
- Section 3: Additional plots to illustrate over-fitting effect during single-step adversarial training.
- Section 4: Effect of hyper-parameters
- Section 5: Comparison with EAT
- Section 6: Trend of R_ϵ , training and validation loss during SADS.

1. Network Architecture

Network architecture of models used for MNIST and Fashion-MNIST datasets are shown in Table 1. Model-A and Model-B are used for generating adversarial samples in black-box setting.

2. Adversarial training and Attack generation methods

2.1. Adversarial Sample Generation Methods

In this subsection, we discuss the formulation of adversarial attacks.

Fast Gradient Sign Method (FGSM): Non-iterative attack method proposed by [2]. This method generates l_∞ norm

bounded adversarial perturbation based on the linear approximation of loss function.

$$x^* = x + \epsilon \cdot \text{sign}(\nabla_x J(f(x; \theta), y_{true})) \quad (1)$$

Iterative Fast Gradient Sign Method (IFGSM) [4]: Iterative version of FGSM attack. At each iteration, adversarial perturbation of small step size (α) is added to the image. In our experiments, we set $\alpha = \epsilon/steps$.

$$x^0 = x \quad (2)$$

$$x^{N+1} = x^N + \alpha \cdot \text{sign}(\nabla_{x^N} J(f(x^N; \theta), y_{true})) \quad (3)$$

Projected Gradient Descent (PGD) [5]: Initially, a small random noise sampled from Uniform distribution (U) is added to the image. Then at each iteration, perturbation of small step size (ϵ_{step}) is added to the image, and followed by re-projection.

$$x^0 = x + U(-\epsilon_{step}, \epsilon_{step}, \text{shape}(x)) \quad (4)$$

$$x^{N+1} = x^N + \epsilon_{step} \cdot \text{sign}(\nabla_{x^N} J(f(x^N; \theta), y_{true})) \quad (5)$$

$$x^{N+1} = \text{clip}(x^{N+1}, \min = x - \epsilon, \max = x + \epsilon) \quad (6)$$

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [1]: Introduces a momentum term into the IFGSM formulation. Here, μ represents the momentum term. α represents step size and is set to $\epsilon/steps$.

$$x^0 = x \quad (7)$$

$$g^{N+1} = \mu \cdot g^N + \frac{\nabla_{x^N} J(f(x^N; \theta), y_{true})}{\|\nabla_{x^N} J(f(x^N; \theta), y_{true})\|_1} \quad (8)$$

$$x^{N+1} = x^N + \alpha \cdot \text{sign}(g^{N+1}) \quad (9)$$

Table 1: Architecture of networks used for MNIST and Fashion-MNIST datasets.

LeNet+	Model-A	Model-B	Model-C	Model-D
Conv(32,5,5) + Relu MaxPool(2,2)	Conv(64,5,5) + Relu Conv(64,5,5) + Relu	Dropout(0.2) Conv(64,8,8) + Relu	Conv(128,3,3) + Tanh MaxPool(2,2)	$\left\{ \begin{array}{l} \text{FC}(300) + \text{Relu} \\ \text{Dropout}(0.5) \end{array} \right\} \times 4$
Conv(64,5,5) + Relu MaxPool(2,2)	Dropout(0.25) FC(128) + Relu	Conv(128,6,6) + Relu Conv(128,5,5) + Relu	Conv(64,3,3) + Tanh MaxPool(2,2)	FC + Softmax
FC(1024) + Relu FC + Softmax	Dropout(0.5) FC + Softmax	Dropout(0.5) FC + Softmax	FC(128) + Relu FC + Softmax	

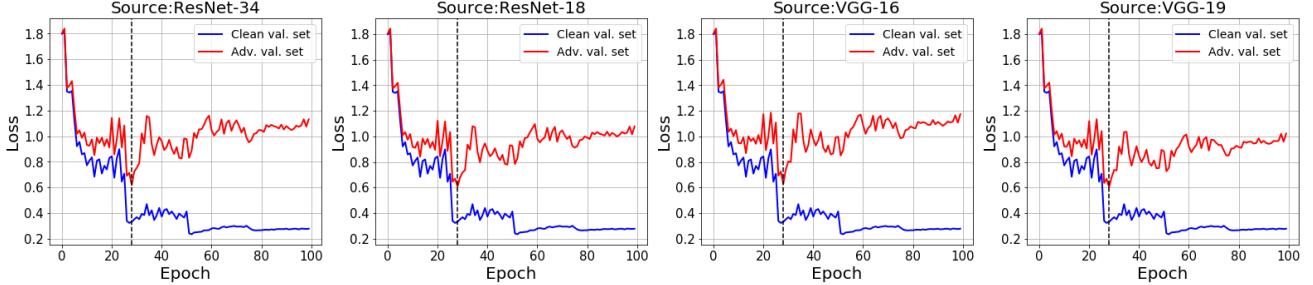


Figure 1: **Single-step adversarial training:** Trend of validation loss during single-step adversarial training, obtained for ResNet-34 trained on CIFAR-10 dataset. Adversarial validation set is generated using column-1: ResNet-34, column-2: ResNet-18, column-3: VGG-16 and column-4: VGG-19.

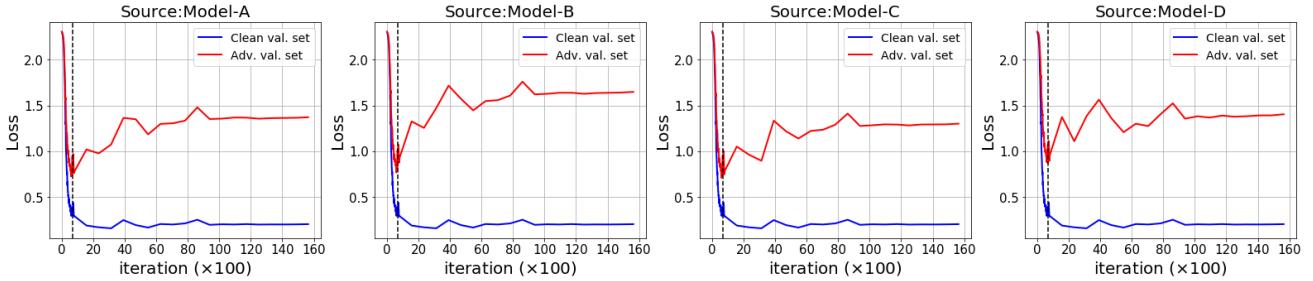


Figure 2: **Single-step adversarial training:** Trend of validation loss during single-step adversarial training, obtained for LeNet+ trained on MNIST dataset. Adversarial validation set is generated using column-1: Model-A, column-2: Model-B, column-3: Model-C and column-4: Model-D.

2.2. Adversarial Training Methods

In this subsection we explain the existing adversarial training methods.

FGSM Adversarial Training (FAT): During training, at each iteration a portion of clean samples in the mini-batch are replaced with their corresponding adversarial samples generated using the model being trained. Fast Gradient Sign Method (FGSM) is used for generating these adversarial samples.

Ensemble Adversarial Training (EAT) [6]: At each iteration a portion of clean samples in the mini-batch are replaced with their corresponding adversarial samples. These adversarial samples are generated by the model being trained or by one of the model from the fixed set of pre-trained models. Table 2 shows the setup used for EAT method.

PGD Adversarial Training (PAT): Multi-step adversarial training method proposed by [5]. At each iteration all the clean samples in the mini-batch are replaced with their corresponding adversarial samples generated using the model being trained. Projected Gradient Descent (PGD) method is used for generating these samples.

TRADES: Multi-step adversarial training method proposed by [8]. The method proposes a regularizer that encourages the output of the network to be smooth. The training mini-batches contain clean and their corresponding adversarial samples. These adversarial samples are generated using Projected Gradient Descent with modified loss function.

3. Additional plots to illustrate over-fitting effect

In the main paper, we showed over-fitting effect during training of LeNet+ on MNIST dataset using single-step adversarial training. Fig. 1 shows the plot of validation loss, obtained for ResNet-34 trained on CIFAR-10 dataset using single-step adversarial training. We observe over-fitting effect even when model with different architecture is used for generating adversarial validation set. Fig. 2 shows the validation loss obtained for LeNet+ trained on MNIST dataset using single-step adversarial training. Normally trained models with different architecture are used for generating adversarial validation set.

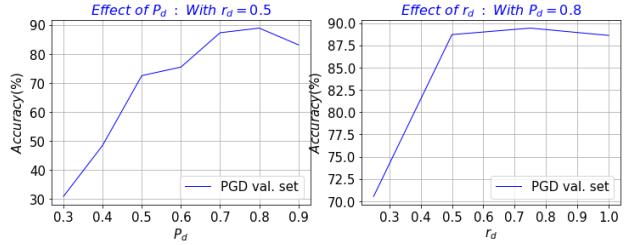


Figure 3: Effect of hyper-parameter P_d and r_d of SADS

4. Effect of Hyper-Parameters

In order to show the effect of hyper-parameters, we train LeNet+ shown in table 1 on MNIST dataset, using SADS with different hyper-parameter settings. Validation set accuracy of the model for PGD attack ($\epsilon = 0.3$ and $steps = 40$) is obtained for each hyper-parameter setting with one of them being fixed and the other being varied.

Effect of hyper-parameter P_d : The hyper-parameter P_d defines the initial dropout probability applied to all dropout layers. We train LeNet+ on MNIST dataset, using the proposed method for different initial dropout probability P_d . Column-1 of Fig. 3 shows the effect of varying dropout probability from 0.3 to 0.9. It can be observed that the robustness of the model to multi-step attack initially increases with the increase in the value of P_d ($P_d < 0.8$), and further increase in P_d causes the model’s robustness to decrease, and this is due to under-fitting.

Effect of hyper-parameter r_d : The hyper-parameter r_d decides the iteration at which dropout probability reaches zero and is expressed in terms of maximum training iteration. Column-2 of Fig. 3 shows the effect varying r_d from 1/4 to 1. It can be observed that for $r_d < 0.5$, there is degradation in the robustness of the model against multi-step attacks. This is because, during the initial stages of training, learning rate is high and the model can easily over-fit to adversaries generated by single-step method.

5. Comparison with Ensemble Adversarial Training

We train WideResNet-28-10 [7] on CIFAR-10 [3] dataset using EAT and SADS. Table 2 shows the setup used for EAT. Pre-trained models are used for generating adversarial samples during EAT. Table 3 shows the recognition accuracy of models trained using EAT and SADS in white-box attack setting. It can be observed that the model trained using SADS is robust to both single-step (FGSM) and multi-step attacks (PGD), whereas models trained using EAT are susceptible to multi-step attack.

Table 2: Setup used for Ensemble Adversarial Training.

Network to be trained		Pre-trained Models
CIFAR-10	WRN-28-10 (Ens-A)	WRN-28-10, ResNet-34
	WRN-28-10 (Ens-B)	WRN-28-10, VGG-19
	WRN-28-10 (Ens-C)	ResNet-34, VGG-19

6. SADS: Trend of R_ϵ , training and validation loss

Fig. 4 and 5 show the trend of R_ϵ , training and validation loss, obtained for models trained using SADS. It can

Table 3: **CIFAR-10: White-Box attack.** Classification accuracy (%) of models trained on CIFAR-10 dataset using different training methods. For all attacks $\epsilon=8/255$ is used and for PGD attack $\epsilon_{step}=2/255$ and $steps=7$ is used.

Training Method	Attack Method		
	Clean	FGSM	PGD-7
EAT Ens-A	92.92	59.56	19.21
EAT Ens-B	92.75	63.40	5.34
EAT Ens-C	93.11	59.74	12.03
SADS	82.01 ±0.06	51.99 ±1.02	45.66 ±1.26

be observed that for the entire training duration R_ϵ does not decay and no over-fitting effect can be observed.

References

- [1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks with momentum. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 9185–9193, 2018. 1
- [2] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learning Representations (ICLR)*, 2015. 1
- [3] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research). 3
- [4] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. *arXiv preprint arXiv:1607.02533*, 2016. 1
- [5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Tsipras Dimitris, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations (ICLR)*, 2018. 1, 2
- [6] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In *International Conference on Learning Representations (ICLR)*, 2018. 2
- [7] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard C. Wilson and William A. P. Smith, editors, *Proceedings of the British Machine Vision Conference (BMVC)*, pages 87.1–87.12. BMVA Press, September 2016. 3
- [8] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically principled trade-off between robustness and accuracy. In *International Conference on Machine Learning*, pages 7472–7482, 2019. 2

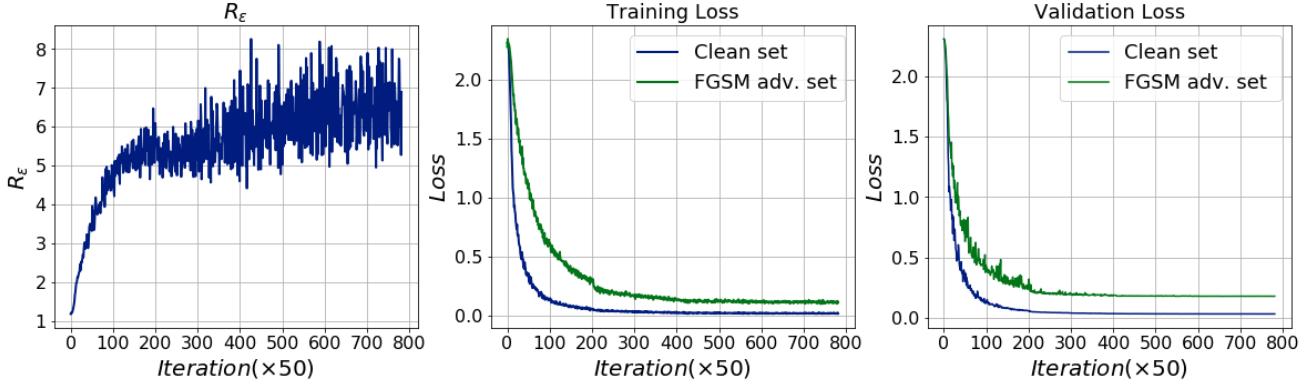


Figure 4: **MNIST**: Trend of R_ϵ , training loss, and validation loss during SADS training method, obtained for LeNet+ trained on MNIST dataset. Column-1: plot of R_ϵ versus iteration. Column-2: training loss versus iteration. Column-3: validation loss versus iteration. Note that, for the entire training duration R_ϵ does not decay, and no over-fitting effect can be observed.

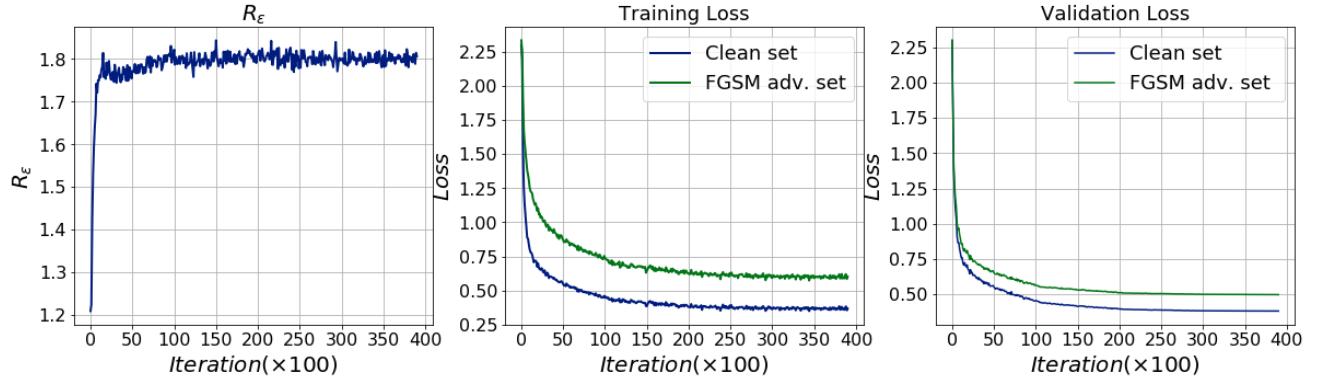


Figure 5: **Fashion-MNIST**: Trend of R_ϵ , training loss, and validation loss during SADS training method, obtained for LeNet+ trained on Fashion-MNIST dataset. Column-1: plot of R_ϵ versus iteration. Column-2: training loss versus iteration. Column-3: validation loss versus iteration. Note that, for the entire training duration R_ϵ does not decay, and no over-fitting effect can be observed.