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1. Network Architecture

Network architecture of models used for MNIST and
Fashion-MNIST datasets are shown in Table 1. Model-A
and Model-B are used for generating adversarial samples in
black-box setting.

2. Adversarial training and Attack generation
methods

2.1. Adversarial Sample Generation Methods

In this subsection, we discuss the formulation of adver-
sarial attacks.
Fast Gradient Sign Method (FGSM): Non-iterative attack
method proposed by [2]. This method generates l∞ norm

bounded adversarial perturbation based on the linear ap-
proximation of loss function.

x∗ = x+ ε.sign(∇xJ(f(x; θ), ytrue)) (1)

Iterative Fast Gradient Sign Method (IFGSM) [4]: Iter-
ative version of FGSM attack. At each iteration, adversarial
perturbation of small step size (α) is added to the image. In
our experiments, we set α = ε/steps.

x0 = x (2)
xN+1 = xN + α.sign

(
∇xNJ(f(xN ; θ), ytrue)

)
(3)

Projected Gradient Descent (PGD) [5]: Initially, a small
random noise sampled from Uniform distribution (U ) is
added to the image. Then at each iteration, perturbation of
small step size (εstep) is added to the image, and followed
by re-projection.

x0 = x+ U
(
− εstep, εstep, shape(x)

)
(4)

xN+1 = xN + εstep.sign
(
∇xNJ(f(xN ; θ), ytrue)

)
(5)

xN+1 = clip
(
xN+1,min = x− ε,max = x+ ε

)
(6)

Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) [1]: Introduces a momentum term into the IFGSM
formulation. Here, µ represents the momentum term. α
represents step size and is set to ε/steps.

x0 = x (7)

gN+1 = µ.gN +
∇xNJ(f(xN ; θ), ytrue)

||∇xNJ(f(xN ; θ), ytrue)||1
(8)

xN+1 = xN + α.sign
(
gN+1

)
(9)

Table 1: Architecture of networks used for MNIST and Fashion-MNIST datasets.

LeNet+ Model-A Model-B Model-C Model-D
Conv(32,5,5) + Relu Conv(64,5,5) + Relu Dropout(0.2) Conv(128,3,3) + Tanh { FC(300) +Relu }× 4MaxPool(2,2) Conv(64,5,5) + Relu Conv(64,8,8) + Relu MaxPool(2,2) Dropout(0.5)
Conv(64,5,5) + Relu Dropout(0.25) Conv(128,6,6) + Relu Conv(64,3,3) + Tanh FC + Softmax

MaxPool(2,2) FC(128) + Relu Conv(128,5,5) + Relu MaxPool(2,2)
FC(1024) + Relu Dropout(0.5) Dropout(0.5) FC(128) + Relu

FC + Softmax FC + Softmax FC + Softmax FC + Softmax



Figure 1: Single-step adversarial training: Trend of validation loss during single-step adversarial training, obtained for
ResNet-34 trained on CIFAR-10 dataset. Adversarial validation set is generated using column-1: ResNet-34, column-2:
ResNet-18, column-3: VGG-16 and column-4: VGG-19.

Figure 2: Single-step adversarial training: Trend of validation loss during single-step adversarial training, obtained for
LeNet+ trained on MNIST dataset. Adversarial validation set is generated using column-1: Model-A, column-2: Model-B,
column-3: Model-C and column-4: Model-D.

2.2. Adversarial Training Methods

In this subsection we explain the existing adversarial
training methods.
FGSM Adversarial Training (FAT): During training, at
each iteration a portion of clean samples in the mini-batch
are replaced with their corresponding adversarial samples
generated using the model being trained. Fast Gradient
Sign Method (FGSM) is used for generating these adver-
sarial samples.
Ensemble Adversarial Training (EAT) [6]: At each iter-
ation a portion of clean samples in the mini-batch are re-
placed with their corresponding adversarial samples. These
adversarial samples are generated by the model being
trained or by one of the model from the fixed set of pre-
trained models. Table 2 shows the setup used for EAT
method.
PGD Adversarial Training (PAT): Multi-step adversarial
training method proposed by [5]. At each iteration all the
clean samples in the mini-batch are replaced with their cor-
responding adversarial samples generated using the model
being trained. Projected Gradient Descent (PGD) method is
used for generating these samples.
TRADES: Multi-step adversarial training method proposed
by [8]. The method proposes a regularizer that encourages
the output of the network to be smooth. The training mini-
batches contain clean and their corresponding adversarial
samples. These adversarial samples are generated using
Projected Gradient Descent with modified loss function.

3. Additional plots to illustrate over-fitting ef-
fect

In the main paper, we showed over-fitting effect during
training of LeNet+ on MNIST dataset using single-step ad-
versarial training. Fig. 1 shows the plot of validation loss,
obtained for ResNet-34 trained on CIFAR-10 dataset using
single-step adversarial training. We observe over-fitting ef-
fect even when model with different architecture is used for
generating adversarial validation set. Fig. 2 shows the vali-
dation loss obtained for LeNet+ trained on MNIST dataset
using single-step adversarial training. Normally trained
models with different architecture are used for generating
adversarial validation set.

Figure 3: Effect of hyper-parameter Pd and rd of SADS



4. Effect of Hyper-Parameters
In order to show the effect of hyper-parameters, we train

LeNet+ shown in table 1 on MNIST dataset, using SADS
with different hyper-parameter settings. Validation set accu-
racy of the model for PGD attack (ε = 0.3 and steps = 40)
is obtained for each hyper-parameter setting with one of
them being fixed and the other being varied.
Effect of hyper-parameter Pd: The hyper-parameter Pd
defines the initial dropout probability applied to all dropout
layers. We train LeNet+ on MNIST dataset, using the pro-
posed method for different initial dropout probability Pd.
Column-1 of Fig. 3 shows the effect of varying dropout
probability from 0.3 to 0.9. It can be observed that the ro-
bustness of the model to multi-step attack initially increases
with the increase in the value of Pd (Pd < 0.8), and further
increase in Pd causes the model’s robustness to decrease,
and this is due to under-fitting.
Effect of hyper-parameter rd: The hyper-parameter rd de-
cides the iteration at which dropout probability reaches zero
and is expressed in terms of maximum training iteration.
Column-2 of Fig. 3 shows the effect varying rd from 1/4 to
1. It can be observed that for rd < 0.5, there is degradation
in the robustness of the model against multi-step attacks.
This is because, during the initial stages of training, learning
rate is high and the model can easily over-fit to adversaries
generated by single-step method.

5. Comparison with Ensemble Adversarial
Training

We train WideResNet-28-10 [7] on CIFAR-10 [3]
dataset using EAT and SADS. Table 2 shows the setup used
for EAT. Pre-trained models are used for generating ad-
versarial samples during EAT. Table 3 shows the recogni-
tion accuracy of models trained using EAT and SADS in
white-box attack setting. It can be observed that the model
trained using SADS is robust to both single-step (FGSM)
and multi-step attacks (PGD), whereas models trained us-
ing EAT are susceptible to multi-step attack.

Table 2: Setup used for Ensemble Adversarial Training.

Network to be trained Pre-trained Models
WRN-28-10 (Ens-A) WRN-28-10, ResNet-34

CIFAR-10 WRN-28-10 (Ens-B) WRN-28-10, VGG-19
WRN-28-10 (Ens-C) ResNet-34, VGG-19

6. SADS: Trend of Rε, training and validation
loss

Fig. 4 and 5 show the trend of Rε, training and valida-
tion loss, obtained for models trained using SADS. It can

Table 3: CIFAR-10: White-Box attack. Classification ac-
curacy (%) of models trained on CIFAR-10 dataset using
different training methods. For all attacks ε=8/255 is used
and for PGD attack εstep=2/255 and steps=7 is used.

Training Attack Method
Method Clean FGSM PGD-7
EAT Ens-A 92.92 59.56 19.21
EAT Ens-B 92.75 63.40 5.34
EAT Ens-C 93.11 59.74 12.03
SADS 82.01 51.99 45.66

±0.06 ±1.02 ±1.26

be observed that for the entire training duration Rε does not
decay and no over-fitting effect can be observed.
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Figure 4: MNIST: Trend of Rε, training loss, and validation loss during SADS training method, obtained for LeNet+ trained
on MNIST dataset. Column-1: plot of Rε versus iteration. Column-2: training loss versus iteration. Column-3: validation
loss versus iteration. Note that, for the entire training duration Rε does not decay, and no over-fitting effect can be observed.

Figure 5: Fashion-MNIST: Trend of Rε, training loss, and validation loss during SADS training method, obtained for
LeNet+ trained on Fashion-MNIST dataset. Column-1: plot of Rε versus iteration. Column-2: training loss versus iteration.
Column-3: validation loss versus iteration. Note that, for the entire training duration Rε does not decay, and no over-fitting
effect can be observed.


