Supplementary: Single-step Adversarial training with Dropout Scheduling

Vivek B.S. and R. Venkatesh Babu
Video Analytics Lab, Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

Contents
e Section 1: Network architecture.

e Section 2: Adversarial training and Attack generation
methods.

e Section 3: Additional plots to illustrate over-fitting ef-
fect during single-step adversarial training.

e Section 4: Effect of hyper-parameters
e Section 5: Comparison with EAT

e Section 6: Trend of R, training and validation loss
during SADS.
1. Network Architecture

Network architecture of models used for MNIST and
Fashion-MNIST datasets are shown in Table 1. Model-A
and Model-B are used for generating adversarial samples in
black-box setting.

2. Adversarial training and Attack generation
methods

2.1. Adversarial Sample Generation Methods

In this subsection, we discuss the formulation of adver-

bounded adversarial perturbation based on the linear ap-
proximation of loss function.

¥ =x+ e.sign(VaJ(f(x;0), Yerue)) (1)

Iterative Fast Gradient Sign Method IFGSM) [4]: Iter-
ative version of FGSM attack. At each iteration, adversarial
perturbation of small step size («) is added to the image. In
our experiments, we set o = €/ steps.

2 = z 2)
N+1 N+ a.sign(V$N J(f (2™ 9),ytme)) 3)

Projected Gradient Descent (PGD) [5]: Initially, a small
random noise sampled from Uniform distribution (U) is
added to the image. Then at each iteration, perturbation of
small step size (€s¢ep) is added to the image, and followed
by re-projection.

xT

LL‘O = X + U(- Estep7 68t6p7 shape(l‘)) (4)
N = N 4 Estep~Sign(vaJ(f(xN? 0)? yt”ue)DS)
2N = clip(2N T min = 2 — €, maz = x4 €) (6)

Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) [1]: Introduces a momentum term into the IFGSM
formulation. Here, p represents the momentum term. o
represents step size and is set to €/steps.

= z @)
va J(f(:L'N, 0)7 ytrue)

sarial attacks. gV = gV + (8)
Fast Gradient Sign Method (FGSM): Non-iterative attack (IVan J(f(@N50), yerue) 1
method proposed by [2]. This method generates /., norm 2N = 2N+ ausign(gV) 9)
Table 1: Architecture of networks used for MNIST and Fashion-MNIST datasets.
LeNet+ Model-A Model-B Model-C Model-D
Conv(32,5,5) + Relu | Conv(64,5,5) + Relu Dropout(0.2) Conv(128,3,3) + Tanh { FC(300) +Relu } w4
MaxPool(2,2) Conv(64,5,5) + Relu | Conv(64,8,8) + Relu MaxPool(2,2) Dropout(0.5)
Conv(64,5,5) + Relu Dropout(0.25) Conv(128,6,6) + Relu | Conv(64,3,3) + Tanh FC + Softmax
MaxPool(2,2) FC(128) + Relu Conv(128,5,5) + Relu MaxPool(2,2)
FC(1024) + Relu Dropout(0.5) Dropout(0.5) FC(128) + Relu
FC + Softmax FC + Softmax FC + Softmax FC + Softmax

Source:ResNet-34 Source:ResNet-18

Source:VGG-16 Source:VGG-19

18
16
14
12

—— Clean val. set
—— Adv. val. set

—— Clean val. set
—— Adv. val. set

18
16
14
12

18
16
14
12

—— Clean val. set
—— Adv. val. set

—— Clean val. set
—— Adv. val. set

18
16
14
12

] I] I
o 1.0 o L0 o 1.0 ol0
- - - -
0.8 0.8 0.8 08
0.6 0.6 0.6 06
0.4 M—z’—\——— 0.4 Mﬁ_— 0.4 M’J’__— 0.4 Mﬂ_—
0.2 0.2 0.2 02
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Epoch Epoch

Epoch Epoch

Figure 1: Single-step adversarial training: Trend of validation loss during single-step adversarial training, obtained for
ResNet-34 trained on CIFAR-10 dataset. Adversarial validation set is generated using column-1: ResNet-34, column-2:

ResNet-18, column-3: VGG-16 and column-4: VGG-19.

Source:Model-A Source:Model-B

Source:Model-C Source:Model-D

— Clean val. set
— Adv. val. set

— Clean val. set
—— Adv. val. set

ST

NN N

2.0

15

Loss

05

— Clean val. set
— Adv. val. set

et

-

— Clean val. set
— Adv. val. set

iy Szesas

N N

0 20 40 60 80 100 120 140 160 0

iteration (x100) iteration (x100)

20 40 60 80 100 120 140 160

0 20 40 60 80 100 120 140 160 0
iteration (x100)

20 40 60 80 100 120 140 160
iteration (x100)

Figure 2: Single-step adversarial training: Trend of validation loss during single-step adversarial training, obtained for
LeNet+ trained on MNIST dataset. Adversarial validation set is generated using column-1: Model-A, column-2: Model-B,

column-3: Model-C and column-4: Model-D.

2.2. Adversarial Training Methods

In this subsection we explain the existing adversarial
training methods.
FGSM Adpversarial Training (FAT): During training, at
each iteration a portion of clean samples in the mini-batch
are replaced with their corresponding adversarial samples
generated using the model being trained. Fast Gradient
Sign Method (FGSM) is used for generating these adver-
sarial samples.
Ensemble Adversarial Training (EAT) [0]: At each iter-
ation a portion of clean samples in the mini-batch are re-
placed with their corresponding adversarial samples. These
adversarial samples are generated by the model being
trained or by one of the model from the fixed set of pre-
trained models. Table 2 shows the setup used for EAT
method.
PGD Adversarial Training (PAT): Multi-step adversarial
training method proposed by [5]. At each iteration all the
clean samples in the mini-batch are replaced with their cor-
responding adversarial samples generated using the model
being trained. Projected Gradient Descent (PGD) method is
used for generating these samples.
TRADES: Multi-step adversarial training method proposed
by [8]. The method proposes a regularizer that encourages
the output of the network to be smooth. The training mini-
batches contain clean and their corresponding adversarial
samples. These adversarial samples are generated using
Projected Gradient Descent with modified loss function.

3. Additional plots to illustrate over-fitting ef-
fect

In the main paper, we showed over-fitting effect during
training of LeNet+ on MNIST dataset using single-step ad-
versarial training. Fig. 1 shows the plot of validation loss,
obtained for ResNet-34 trained on CIFAR-10 dataset using
single-step adversarial training. We observe over-fitting ef-
fect even when model with different architecture is used for
generating adversarial validation set. Fig. 2 shows the vali-
dation loss obtained for LeNet+ trained on MNIST dataset
using single-step adversarial training. Normally trained
models with different architecture are used for generating
adversarial validation set.

Effect of Py : With ra=0.5 Effect of rg : With P;=0.8

Accuracy(%)

—— PGDval. set —— PGD val. set

03 04 05 06

Py

0.7 08 09 03 04 05 06 0.7 0.8 0.9 10

T

Figure 3: Effect of hyper-parameter Py and r4 of SADS

4. Effect of Hyper-Parameters

In order to show the effect of hyper-parameters, we train
LeNet+ shown in table 1 on MNIST dataset, using SADS
with different hyper-parameter settings. Validation set accu-
racy of the model for PGD attack (e = 0.3 and steps = 40)
is obtained for each hyper-parameter setting with one of
them being fixed and the other being varied.

Effect of hyper-parameter P;: The hyper-parameter Py
defines the initial dropout probability applied to all dropout
layers. We train LeNet+ on MNIST dataset, using the pro-
posed method for different initial dropout probability P.
Column-1 of Fig. 3 shows the effect of varying dropout
probability from 0.3 to 0.9. It can be observed that the ro-
bustness of the model to multi-step attack initially increases
with the increase in the value of Py (Py < 0.8), and further
increase in P; causes the model’s robustness to decrease,
and this is due to under-fitting.

Effect of hyper-parameter r;: The hyper-parameter r; de-
cides the iteration at which dropout probability reaches zero
and is expressed in terms of maximum training iteration.
Column-2 of Fig. 3 shows the effect varying r,4 from 1/4 to
1. It can be observed that for r; < 0.5, there is degradation
in the robustness of the model against multi-step attacks.
This is because, during the initial stages of training, learning
rate is high and the model can easily over-fit to adversaries
generated by single-step method.

5. Comparison with Ensemble Adversarial
Training

We train WideResNet-28-10 [7] on CIFAR-10 [3]
dataset using EAT and SADS. Table 2 shows the setup used
for EAT. Pre-trained models are used for generating ad-
versarial samples during EAT. Table 3 shows the recogni-
tion accuracy of models trained using EAT and SADS in
white-box attack setting. It can be observed that the model
trained using SADS is robust to both single-step (FGSM)
and multi-step attacks (PGD), whereas models trained us-
ing EAT are susceptible to multi-step attack.

Table 2: Setup used for Ensemble Adversarial Training.

Network to be trained Pre-trained Models
WRN-28-10 (Ens-A) WRN-28-10, ResNet-34
CIFAR-10 WRN-28-10 (Ens-B) WRN-28-10, VGG-19
WRN-28-10 (Ens-C) ResNet-34, VGG-19

6. SADS: Trend of R, training and validation
loss

Fig. 4 and 5 show the trend of R, training and valida-
tion loss, obtained for models trained using SADS. It can

Table 3: CIFAR-10: White-Box attack. Classification ac-
curacy (%) of models trained on CIFAR-10 dataset using
different training methods. For all attacks €=8/255 is used
and for PGD attack €,;.,=2/255 and steps=7 is used.

Training Attack Method
Method Clean FGSM PGD-7

EAT Ens-A 9292 59.56 19.21
EAT Ens-B 92.75 63.40 5.34
EAT Ens-C ~ 93.11 59.74 12.03
SADS 82.01 51.99 45.66

+0.06 +1.02 £1.26

be observed that for the entire training duration R, does not
decay and no over-fitting effect can be observed.

References

[1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks
with momentum. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9185-9193,
2018. 1

[2] Tan J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations (ICLR), 2015.
1

[3] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 3

[4] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533,2016. 1

[5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Tsipras Dimitris, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In International Con-
ference on Learning Representations (ICLR), 2018. 1,2

[6] Florian Tramer, Alexey Kurakin, Nicolas Papernot, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial train-
ing: Attacks and defenses. In International Conference on
Learning Representations (ICLR), 2018. 2

[7] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Edwin R. Hancock Richard C. Wilson and William
A. P. Smith, editors, Proceedings of the British Machine Vi-
sion Conference (BMVC), pages 87.1-87.12. BMVA Press,
September 2016. 3

[8] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In International
Conference on Machine Learning, pages 7472-7482, 2019. 2

Rs Training Loss Validation Loss

8 —— Clean set —— Clean set
7 —— FGSM adv. set 2.0 —— FGSM adv. set
6
w2
o
4
3 0.5
2
1 0.0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Iteration(x50) Iteration(x5Q) Iteration(x50)
Figure 4: MNIST: Trend of R,, training loss, and validation loss during SADS training method, obtained for LeNet+ trained
on MNIST dataset. Column-1: plot of R, versus iteration. Column-2: training loss versus iteration. Column-3: validation
loss versus iteration. Note that, for the entire training duration R, does not decay, and no over-fitting effect can be observed.

R: Training Loss Validation Loss
18 2.25 —— Clean set 2.25 —— Clean set
2.00 —— FGSM adv. set 2.00 —— FGSM adyv. set
1.7
1.75 175
1.6
. m 1.50 1.50
® 15 S 125 1.25
14 1.00 1.00
0.75
13 0.75
0.50 0.50
12 0.25 -
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Iteration(x100) Iteration(x100) Iteration(x100)

Figure 5: Fashion-MNIST: Trend of R., training loss, and validation loss during SADS training method, obtained for
LeNet+ trained on Fashion-MNIST dataset. Column-1: plot of R, versus iteration. Column-2: training loss versus iteration.
Column-3: validation loss versus iteration. Note that, for the entire training duration R, does not decay, and no over-fitting
effect can be observed.

