
8. Supplementary Material
In this supplementary material, we first explain the de-

tails about our modification on KPConv [33], then we an-
alyze the contribution of rotation augmentation by an abla-
tion study on 3DRotatedMatch dataset. We further conduct
the ablative experiments on the detector loss as well as in-
corporating our detector with FCGF. Finally, we provide ad-
ditional details about the experiments on 3DMatch, KITTI
and ETH datasets and some further visualization results.

8.1. Implementation Details
Normalization term As explained in the main paper, the
original formulation of KPConv is not invariant to point
density. Thus we add a density normalization term, which
sums up the number of the supporting points in the neigh-
borhood, to ensure that the convolution is sparsity invariant.
To demonstrate the effectiveness of the normalization term,
we train networks with and without the normalization term
in the same settings with what is described in the main pa-
per, and report the registration results on 3DMatch dataset.
During testing, instead of using voxel downsample, we
use uniform downsample i.e. uniform down sample in
Open3D [39] implementation, by which the density vari-
ations of input point clouds is enlarged. We evaluate the
model on sample rate = 15, which leads to a similar aver-
age number of points for the point clouds in the test set. The
result is shown in Table 6.

Voxel Uniform
5000 5000 2500 1000 500 250

w/o norm. 95.6 77.3 76.5 73.9 71.4 66.1
w norm. 95.8 91.9 91.8 91.2 90.2 89.4

Table 6: Feature matching recall at ⌧1 = 10cm, ⌧2 = 5%.
Voxel indicates voxel downsample with voxel size = 0.03m,
while Uniform indicates uniform downsample with sample
rate = 15.

As shown in Table 6, the normalization term is effective
to handle neighborhoods with different sparsity levels.
When using a uniform downsample strategy, D3Feat
with the normalization term is able to maintain a high
matching quality, and outperform the model without the
normalization term by a large margin.

Network architecture We adopt the architecture for seg-
mentation tasks proposed in KPConv [33]. The number of
channels in the encoder part are (64, 128, 256, 512, 1024).
Skip connections are used between the corresponding lay-
ers of the encoder part and the decoder part. The output
features are processed by a 1⇥1 convolution to get the final
32 dimensional features. Other settings are the same with
original paper [33].

8.2. Ablation on Rotation Invariance
In experiments, we find that a fully convolutional net-

work is able to empirically achieve strong rotation invari-
ance through low cost data augmentation. To demonstrate
the effectiveness of simple data augmentation on the robust-
ness to rotation, we further train the model without rotation
augmentation and evaluate it on 3DRotatedMatch dataset.
The result is shown in Table 7.

5000 2500 1000 500 250
w/o aug. 5.5 5.4 4.9 5.4 5.5
w aug. 95.5 95.0 94.8 92.1 88.9

Table 7: Feature match recall on 3DRotatedMatch with and
without rotation augmentation.

Without rotation augmentation, D3Feat fails on 3DRo-
tatedMatch because the network cannot learn the rotation
invariance from the data.

8.3. Ablation on Detector Loss
To better analyze the contribution of the proposed de-

tector loss, we re-create a table below, which derives orig-
inal results from Table 2, and the results from our model
without the detector loss and performing on the predicted
keypoints(w/o detector (pred)). The effect of detector loss
can be seen from the comparison between w/o detector and
D3Feat on both random (rand) or predicted (pred) points.
It is shown that the detector loss not only strengthens the
descriptor itself (given random keypoints), but also boosts
the performance of the detector (given predicted keypoints).
It is also noteworthy that only D3Feat(pred) improves the
Inlier Ratio when reducing the number of points, which
clearly indicates that the detector loss helps to better rank
the keypoints regarding distinctiveness.

Keypoints 5000 2500 1000 500 250
Feature Matching Recall (%)

w/o detector(rand) 95.0 94.3 94.2 92.5 90.7
w/o detector(pred) 95.2 95.0 94.5 92.4 90.4
D3Feat(rand) 95.3 95.1 94.2 93.6 90.8
D3Feat(pred) 95.8 95.6 94.6 94.3 93.3

Inlier Ratio (%)
w/o detector(rand) 40.7 39.9 35.2 31.0 25.1
w/o detector(pred) 41.7 40.3 38.7 36.6 33.2
D3Feat(rand) 40.6 38.3 33.3 28.6 23.5
D3Feat(pred) 40.7 40.6 42.7 44.1 45.0

Table 8: Ablation study on the proposed detector loss.

8.4. Ablation on Detector with FCGF
Since the detection scores are computed on top of the

extracted dense descriptors, it is easy to incorporate our de-

tector with other dense feature description models, such as
FCGF [2]. To demonstrate the usability of our method, we
train the FCGF with the proposed joint learning method and
evaluate it on the 3DMatch dataset, as shown in Table 9.
The model FCGF + detector is trained using the proposed
detector loss under the same setting with [2] for 100 epochs.

Keypoints 5000 2500 1000 500 250
Registration Recall (%)

FCGF[2] 87.3 85.8 85.8 81.0 73.0
FCGF + detector 86.7 87.8 88.3 85.4 81.5

Inlier Ratio (%)
FCGF[2] 56.9 54.5 49.1 43.3 34.7
FCGF + detector 53.5 53.2 53.6 53.2 51.0

Table 9: Evaluation results of FCGF trained with the pro-
posed detector loss.

The result shows that FCGF can indeed benefit from the
proposed joint learning and maintain a high performance
given a smaller number of points.

8.5. Runtime
To demonstrate the efficiency of our method, we com-

pare the runtime of D3Feat with FCGF [2] on 3DMatch in
Table 10. For a fair comparison, we use the same voxel
size (2.5cm, roughly 20k points) with FCGF to measure the
runtime of D3Feat including both detection and description.
The performance difference mainly lies in the sparse convo-
lution used by FCGF, which is time-consuming in hashing.

CPU GPU Time(s)
FCGF[2] Intel 10-core 3.0GHz(i7-6950) Titan-X 0.36
D3Feat Intel 4-core 4.0GHz(i7-4790K) GTX1080 0.13

Table 10: Average runtime per fragment on 3DMatch test
set.

8.6. Evaluation Metric for 3DMatch
Feature matching recall Feature matching recall is first
proposed in [5], which measures the quality of features
without using a RANSAC pipeline. Given two partially
overlapped point cloud P and Q, and the descriptor net-
work denoted as a non-linear function f mapping from in-
put points to feature descriptors, the correspondence set for
the fragments pairs is obtained by mutually nearest neigh-
bor search in feature space,

⌦ = {pi 2 P, qj 2 Q|f(pi) = nn(f(qj), f(P)),

f(qj) = nn(f(pi), f(Q))},
(16)

where nn() denotes the nearest neighbor search based on
the Euclidean distance. Finally the feature matching recall

is defined as,

R =
1

|M |

|M |X

m=1

1
⇣h 1

|⌦|
X

(i,j)2⌦

1(||pi�Tmqj || < ⌧1)
i
> ⌧2

⌘

(17)
where M is the set of point cloud fragment pairs which
have more than 30% overlap, and Tm is the ground truth
transformation between the fragment pair m 2 M . ⌧1
is the inlier distance threshold between a correspondence
pair, and ⌧2 is the inlier ratio threshold of the fragment pair.
Following the setting of [36], the correspondence which
have less than ⌧1 = 10cm euclidean distance between their
descriptors are seen as inliers, and the fragment pairs which
have more than ⌧2 = 5% inlier correspondences will be
counted as one match. The evaluation metric is based on
the theoretical analysis that RANSAC need k = 55258
iterations to achieve 99.9% confidence of finding at least 3
correspondence with inlier ratio 5%.

Registration recall Registration recall [36] measures the
quality of features within a reconstruction system, which
firstly uses a robust local registration algorithm like
RANSAC to estimate the rigid transformation between two
point clouds, then calculate the RMSE of the ground truth
correspondence under the estimated transformation. The
ground truth correspondence set for fragments pair P and
Q is given,

⌦⇤ = {p⇤ 2 P, q⇤ 2 Q} (18)

then the registration recall is defined as,

R =
1

|M |

|M |X

m=1

1
⇣vuut 1

|⌦⇤|
X

(p⇤,q⇤)2⌦⇤

||p⇤ � T̂mq⇤||2 < 0.2
⌘
,

(19)
where T̂ is the transformation matrix estimated by
RANSAC. In our experiment, we run a maximum of 50,000
iterations on the initial correspondence set to estimate the
transformation between fragments following [36].

8.7. Dataset Preprocessing
This section provides the steps to process the datasets

including 3DMatch, 3DRotatedMatch, KITTI and ETH.

3DMatch For training set, we follow the steps in [36]
to get fused point cloud fragments and corresponding
poses. We find all the fragments pairs that have more than
30% overlap to build the training set. During training,
we alternate between selecting the nearby fragment as
the corresponding pair, or randomly selecting from all the
overlapped fragments for fast convergence. For test set,
we directly use the point cloud fragments and ground truth
poses provided by the authors without performing any

preprocess to extract the dense feature and score map.

3DRotatedMatch Our model is inherently translation
invariant because we are using the relative coordinates. So
in order to test the robustness of our model to rotation, we
create the 3DRotatedMatch test set following [4]. We rotate
all the fragments in 3DMatch test set along all three axes
with random sampled angle from a uniform distribution
over [0, 2⇡).

KITTI The training set of KITTI odometry dataset con-
tains 11 sequences, we use sequence 0 to 5 for training,
sequence 6 to 7 for validation and the last three for testing.
Since GPS ground truth is noisy, we first use ICP to
refine the alignment and then verify by whether enough
correspondence pairs can be found. We select Lidar scan
pairs with at least 10m intervals to obtain 1358 pairs for
training, 180 pairs for validation and 555 for testing.

ETH For a fair comparison, we directly use the raw point
clouds, the ground-truth transformations along with the
overlap ratio provided by the authors of [11] to extract the
features and evaluate the registration results.

8.8. Qualitative Visualization
We show some challenging registration results in Fig-

ure 6 and more visualizations of detected keypoints on
3DMatch, ETH, KITTI in Figure 7, 8, 9, respectively.

Figure 6: Qualitative results on the 3DMatch dataset. The first two columns are input point cloud fragments, and the third
column presents the registration results. Best view with color and zoom-in.

Figure 7: Visualization of keypoints on the 3DMatch dataset. Best view with color and zoom-in.

Figure 8: Visualization of keypoints on ETH dataset. Best view with color and zoom-in.

Figure 9: Visualization of keypoints on the KITTI dataset. Best view with color and zoom-in.

