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SAM: The Sensitivity of Attribution Methods to Hyperparameters

S1. Method Description and Implementation Details

We now provide a detailed description of the interpretability methods that we have used in our proposed experiments. As
described in Sec. 2, a deep learning model is a function f , mapping a coloured image x of spatial dimension d ⇥ d onto a
softmax probability of a target class, i.e f : Rd⇥d⇥3

! R. The model f can also be represented as composition of functions
i.e f(x) = softmax(L(x)), where L represents the logit score. An attribution method A, maps the model f , an image x
and the respective set of hyperparameters H to an attribution map a 2 [�1, 1]d⇥d 4, i.e. A(f,x,H) = a. The attribution
score ai 2 [�1, 1] corresponding to a pixel xi, is an indication of how much a pixel contributes for or against the model
prediction, f(x), depending on the sign of ai. Most explanation methods, particularly the perturbation-based methods,
inadvertently introduce their own hyperparameters, H, but the set H can be empty for some explanation methods.

Now we describe different gradient and perturbation-based explanation algorithms used in our experiments.

• Gradient - Model gradients for a given image and a target class represent how a small change in input pixels values
affects the classification score and thus, serves as a common attribution map. Mathematically, Gradient attribution map,
aGrad, is defined as:

aGrad =
@L

@x

• Gradient � Input (GI) - It is the Hadamard product of the input and the model gradients with respect to the input.
Mathematically, GI attribution map, aGI , is defined as:

aGI = x�
@L

@x

• Integrated Gradients (IG) - IG tackles the gradient saturation problem by averaging the gradients over NIG interpo-
lated inputs derived using input and “baseline” image. Here, “baseline image" is the featureless image for which model
prediction is neutral. Mathematically, IG attribution map, aIG is defined as:

aIG = (x� x̄)⇥
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where x̄ is the baseline image. In practice, the integral above is approximated as follows:
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with NT being the number of trials.
In our experiments, we only consider the number of trials, NT , as a hyperparameter and fix the number of interpolated
samples NIG to 100. Our PyTorch implementation of IG follows the original implementation by the authors [1].

4Following Adebayo et al. [8], we normalized the attribution maps of all explanation methods to the range [-1.0, 1.0] except for SP and MP. The
attribution maps for SP and MP, by default, have a fixed range of [-1.0, 1.0] and [0.0, 1.0] respectively. For other explanation methods, the attribution maps
were normalized by dividing the heatmaps by the maximum of their absolute values.



• SmoothGrad (SG) - To create smooth and potentially robust heatmaps (to input perturbations), SG averages the gradi-
ents across a large number of noisy inputs. Mathematically, SG attribution map, aSG, is defined as:

aSG =
1

NSG

NSGX

n=1

@L(x+ ✏n)

@x

where ✏ are i.i.d samples drawn from a Gaussian distribution of mean µ and std �.
In our experiments, we consider two major hyperparameters of SG, namely the std, � and NSG samples. The mean
for the i.i.d. samples were fixed to 0. Our PyTorch implementation of SG follows the original implementation by the
authors [5].

• Sliding Patch (SP) - SP, or Occlusion as it is simply called, is one of the simplest perturbation-based methods where
the authors use a gray patch to slide across the image and the change in probability is treated as an attribution value at
the corresponding location. Concretely, given a binary mask, m 2 {0, 1}d⇥d (with 1’s for the pixels in the patch and
0’s otherwise), and a filler image, z, a perturbed image x̄ 2 Rd⇥d⇥3 is defined as follows:

x̄ = x� (1D⇥D �m) + z �m (1)

where z is a zero image or gray image5 before input-pre-processing. Thus, the SP explanation map, aSP , at the pixel
location i is defined as:

aSP
i = f(x)� f(x̄i)

where x̄i is the corresponding perturbed image generated by setting the patch centre at i. Due to computational com-
plexity, the square patch (size p⇥ p where p 2 N)) is slid using a stride value of s greater than 1 (s 2 N), resulting in an
attribution map aSP

2 Rd0⇥d0
where d0 = b

d�p
s +1c with b.c being the greatest integer. We use bilinear upsampling to

scale aSP back to the full image resolution.
In our experiments, we fix the stride s to be 3 and only change the patch side p. We implemented SP from scratch using
PyTorch based on a MATLAB implementation [4].

• LIME - Similar to SP, it is another perturbation-based method which occludes the input image randomly. The input
image is first segmented into a set of S non-overlapping superpixels. Then it generates NLIME perturbed samples by
graying out a random set of superpixels out of all the 2S possible combinations, i.e. it generates a random superpixel
mask m0

2 {0, 1}S , to mask out the image as in Eq. 1. For each perturbed sample x̄i, LIME distributes the model
prediction f(x̄i) among the superpixels, inversely weighted by the L2 distance of x̄i from the original image x. Finally,
the weights of the superpixels are averaged over NLIME perturbed samples. The final weight ak for the kth superpixel
is assigned to all the pixels in it, thus, resulting in LIME attribution map aLIME .
We use SLIC algorithm [7] for generating the superpixels and consider the number of samples, NLIME , number of
superpixels S and the random seed as hyperparameters in our experiments. All the other parameters are set to their
default value as given in the author’s implementation [3].

• MP - Instead of perturbing the image with a fixed mask, MP learns the minimal continuous mask, m 2 [0, 1]d⇥d, which
could maximally minimize the model prediction. MP proposes the following optimization problem:

m⇤ = argmin
m

� kmk1 + f(x̄)

where the perturbed input, x̄, is given by Eq. 1 and the filler image, z, is obtained by blurring x with a Gaussian blur
of radius bR. In order to avoid the generation of adversarial samples, MP learns a small mask of size d00 ⇥ d00 which is
upsampled to the original image size, d⇥ d, in every optimization step. To learn a robust and smooth mask, the authors
further change the objective function as follows:

m⇤ = argmin
m

�1 kmk1 + �2TV (m) + E⌧⇠U(0,a)f(�(x̄, ⌧))

5In the ImageNet dataset, the mean pixel value is (0.485, 0.456, 0.406).



where TV (m) is the TV-norm used to obtain a smooth mask. The third term is the expectation over randomly jittered
samples. The jitter operator �(.) translates the perturbed sample by ⌧ pixels in both horizontal and vertical direction,
where ⌧ is uniformly sampled from the range [0, a] with a 2 R. In practice, the above equation is implemented by
gradient-descent for a number of iterations Niter

Notably, MP introduces many hyperparameters and the model explanation map, aMP = m, learnt by MP is entangled
with these hyperparameters. We perform sensitivity experiments with various setting of iterations Niter, Gaussian
blur radius bR, and the random seed for mask initialization. Our MP implementation in PyTorch is based on the Caffe
implementation given by the authors [6].

S2. Adversarial training

Madry et al. [33] proposed training robust classifiers using adversarial training. Engstrom et al. [20] adversarially trained
a ResNet-50 model using Projected Gradient Descent (PGD) [33] attack with a normalized step size. We followed [20] and
trained robust GoogLeNet model, denoted as GoogLeNet-R, for our sensitivity experiments. We used adversarial perturbation
in l2-norm for generating adversarial samples during training. Additionally, we used ✏ = 3, a step size of 0.5 and the number
of steps as 7 for PGD. The model was trained end-to-end for 90 epochs using a batch-size of 256 on 4 Tesla-V100 GPU’s.
We used SGD optimizer with a learning rate (lr) scheduler starting with lr = 0.1 and dropping the learning rate by 10 after
every 30 epochs. The standard accuracy for off-the-shelf GoogLeNet model [39] on 50k ImageNet validation dataset was
68.862%. Our adversarially trained GoogLeNet-R achieved an accuracy of 50.938% on the same 50k images.

S3. Similarity between IG heatmaps for regular classifiers and GI heatmaps for robust classifiers

IG generates a smooth attribution map by averaging gradients over a large collection of interpolated inputs. Intuitively,
both IG and GI are computed using the element-wise product of an input and its respective gradient. Hence, similar to
Sec. 4.2, we evaluate the similarity between the IG of regular models with the GI of robust models.
Experiment For each image, we generated IG explanations for regular models by sweeping across the number of trials
NT 2 {0, 10, 50, 100}. Here, NT = 0 represents vanilla GI. We computed the similarity between each IG heatmap of a
regular model (e.g. ResNet) and the vanilla GI of their robust counterparts (e.g. ResNet-R).
Results We observed that, on increasing the NT , the IG becomes increasingly similar to the GI of the robust model (Fig. S1).
The same trend holds for the average similarity scores across the 1735 images for both GoogLeNet and ResNet (Fig. S2).
Similar to Sec. 4.2, the observed similarity scores give a false sense of assurance to the end-users about the model robustness.

(a) Input image (b) IG for ResNet (c) NT =10 (d) NT =50 (e) NT =100 (f) GB [49] (g) GI for ResNet-R

SSIM: 0.7909 0.8648 0.8714 0.8765 0.8833 1.0

Figure S1: The Integrated Gradient (IG) [51] explanations (c–e) for a prediction of ResNet are turning into the explanation
of a different prediction of a different classifier i.e. ResNet-R as we increase NT —the hyperparameter that governs the
smoothness of IG explanations. Similarly, under GuidedBackprop (GB) [49], the explanation appears substantially closer to
that of a different model (f vs. g) compared the original heatmaps (f vs. b). Below each heatmap is the SSIM similarity score
between that heatmap and the heatmap in (g).



(a) GoogLeNet vs. GoogLeNet-R (b) ResNet vs. ResNet-R

Figure S2: Error plots showing the similarity between the Gradient � Input [46] of a robust model (GoogLeNet-R or ResNet-
R) and the Integrated Gradient [51] of the respective regular model (GoogLeNet or ResNet) across all metrics as we increase
NT — a hyperparameter that governs the smoothness of IG explanations. Here, NT = 0 represents the GI of the regular
model. The scores represent the average similarity scores across 1, 735 images.

(a) GoogLeNet vs. GoogLeNet-R (b) ResNet vs. ResNet-R

Figure S3: Error plots showing the similarity between the gradients of a robust model (GoogLeNet-R or ResNet-R) and the
SmoothGrad heatmaps [48] of the respective regular model (GoogLeNet or ResNet) across all metrics as we increase NSG

— a hyperparameter that governs the smoothness of SG explanations. Here, NSG = 0 represents the gradient of the regular
model. The scores are the mean similarity scores taken over 1, 735 images.

S4. Additional sensitivity experiments

S4.1. SmoothGrad sensitivity to the std of Gaussian noise

SmoothGrad (SG) generates the attribution map by averaging the gradients from a number of noisy images. The std of
Gaussian noise � is a heuristically chosen parameter which, ideally, should not change the resultant attribution map. On the
contrary, we found that changing � causes a large variation in the SG attribution maps.
Experiment To test the sensitivity to the std of Gaussian noise, we measure the average similarity between a reference
heatmap at � = 0.2 and each of the heatmaps generated by sweeping across � 2 {0.1, 0.3} on the same input image. Other
than the aforementioned changes, we used all default hyperparameters as in [48].
Results We found that the SG attribution maps of regular models are more sensitive as compared to that of robust models
(Fig. S4b). Quantitatively, high sensitivity was observed in the average similarity scores across the dataset (Fig. S4a). Notably,
the average Spearman correlation score, across the dataset, for GoogLeNet-R is 2.5⇥ than that of GoogLeNet.
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(a) Average robustness across the dataset
when changing std of Gaussian noise �.

SSIM:0.2307

SSIM:0.8509
(b) SG heatmaps for ResNet-R are more consistent
compared to those for ResNet.

Figure S4: Quantitative (a) and qualitative (b) figures showing the sensitivity of SmoothGrad (SG) [48] attribution maps
when the std of the Gaussian noise (�) changes.
Left panel: Compared to regular models (GoogLeNet and ResNet), heatmaps generated for robust models (GoogLeNet-R
and ResNet-R) are substantially more consistent to when the Gaussian std hyperparameter changes (a).
Right panel: Across the dataset, the reference image caused the largest difference between the SSIM scores of ResNet
heatmaps vs. ResNet-R heatmaps (b). As � increases, the attribution maps of ResNet become noisier while ResNet-R
heatmaps become smoother (b; row 1).

S4.2. LIME sensitivity to changes in the random seed and number of perturbed samples

The most common hyperparameter setting for LIME is the random seed for sampling different superpixel combinations.
We quantify the sensitivity of LIME across different random seeds as one can expect a minimum change in the output
attribution map on changing the algorithm seed.
Experiment To test the sensitivity to random seed, we measure the average similarity between a reference heatmap at
seed = 0 and each of the heatmaps generated by sweeping across seed 2 {1, 2, 3, 4} on the same input image. Notably,
the number of intermediate samples for the linear regression fitting in LIME is an important factor for the resultant heatmap.
Hence, we also quantify the sensitivity of LIME across the number of perturbed images, i.e. NLIME 2 {500, 1000}, to
generate two heatmaps and calculate the average similarity metric scores between them.
Results We did not observe any significant difference between similarity scores of robust and regular models across both
experiments (Fig. S5a, S6a). Note that the robust models were adversarially-trained on pixel-wise noise whereas, LIME
operates at the superpixel level. We hypothesize this to be a reason for insignificant differences found between robust vs.
regular models when changing the random seed. The previous experiments were performed at the number of superpixels
S = 50. Additionally, we also repeated the same experiments at 150 superpixels but observed no significant improvement in
the robustness of robust models (data not shown).

Strikingly, the Pearson correlation value for HOG features are high in both experiments (Fig. S5a & Fig. S6a). An
explanation for that is because the SLIC superpixel segmentation step of LIME imposes a strong structural bias in LIME
attribution maps.
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(a) Average similarity scores across the
dataset when changing random seed.

SSIM: 0.1822

SSIM: 0.7793
(b) LIME heatmaps for ResNet-R are more consistent (under SSIM similar-
ity score) compared to those for ResNet.

Figure S5: Quantitative (a) and qualitative (b) figures showing the sensitivity of LIME attribution maps when the random

seed of LIME (which governs the random selection of LIME superpixel masks) changes.
Left panel: For both regular and robust models, LIME attribution maps are similarly sensitive to the random seed (similarity
scores well below 1.0). The high Pearson of HOGs scores are hypothesized to be because the SLIC superpixel segmentation
imposes a consistent visual structure bias across LIME attribution maps (before and after the random seed changes). Under
SSIM, LIME heatmaps of robust models are more consistent than those of regular models.
Right panel: Across the dataset, the reference image causes the largest difference between the SSIM scores of ResNet
heatmaps and those of ResNet-R heatmaps (b; top row vs. bottom row).
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(a) Average robustness across the dataset
when changing NLIME .

SSIM: 0.0918

SSIM: 0.5655
(b) LIME heatmaps for ResNet-R are
more consistent compared to those for
ResNet.

Figure S6: Quantitative (a) and qualitative (b) figures showing the sensitivity of LIME attribution maps when the number of

perturbed samples NLIME changes.
Left panel: Both robust and regular models are similarly sensitive to the NLIME under Pearson correlation of HOGs while
the heatmaps for robust models are more consistent under SSIM (a).
Right panel: Across the dataset, the reference input image causes the largest difference between the SSIM scores of ResNet
heatmaps vs. the SIM scores of ResNet-R heatmaps (b; top row vs. bottom row).

S4.3. Meaningful Perturbation sensitivity to changes in the random seed

For MP mask optimization, Fong et al. [22] used a circular mask initialization that suppresses the score of the target class
by 99% when compared to that of using a completely blurred image. We argue that this circular mask acts as a strong bias
towards ImageNet images (i.e. they may not work for other datasets) since ImageNet mostly contains object-centric images.
Hence, we evaluate the sensitivity of MP attribution maps by initializing masks with different random seeds (corresponding
to different mask initializations).
Experiment Similar to Sec. S4.2, we calculate the average pairwise similarity between a reference heatmap using seed =
0 and each of the heatmaps generated by sweeping across seed 2 {1, 2, 3, 4} on the same input image. All the other



hyperparameters are the same as in [22].
Results We found that robust models are less sensitive to random initialization of masks (Fig. S7b). The average similarity
scores for robust models are consistently higher than their regular counterparts (Fig. S7a).
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(a) Average robustness across the dataset
when changing random seed.

SSIM: 0.3305

SSIM: 0.9871
(b) MP heatmaps for ResNet-R are more consistent compared to those for
ResNet.

Figure S7: Robust classifiers cause heatmaps to be more consistent (i.e. higher SSIM scores) when the random seed changes,
both quantitatively (a) and qualitatively (b).
Right panel: Across the dataset, the reference image causes the largest difference between the SSIM scores of ResNet
heatmaps vs. ResNet-R heatmaps (b; top row vs. bottom row).

(a) Average similarity of heatmaps across
the dataset under three metrics when the
blur radius bR changes.

(b) Average similarity of heatmaps across the dataset under three met-
rics when the number of iterations Niter changes.

Figure S8: Error bar plots showing the similarity of Meaningful-Perturbation (MP) attribution maps when a
hyperparameter—here Gaussian blur radius bR (a), and the number of iterations Niter (b)—changes. These figures
represent the quantitative results for the experiments in Sec. 4.3.2.
Left panel: Changing bR caused the heatmaps for regular classifiers (GoogLeNet and ResNet) to vary more, under Spearman
rank correlation and SSIM, than those for robust classifiers (see Figs. 4a & S16 for qualitative results).
Right panel: Heatmaps generated for regular models (dark red & dark green) are consistently more variable than those
generated for robust models (light red & light green) across all metrics (b).



Algorithm Models SSIM
Localization

Error
Insertion Deletion

SG

GoogLeNet 0.6422±0.3197 0.2744±0.1382 0.1627±0.0386 0.2091±0.0453
GoogLeNet-R 0.9648±0.0051 0.2798±0.0539 0.2146±0.0085 0.2433±0.0090

ResNet 0.7854±0.0238 0.2632±0.1140 0.2012±0.0388 0.2342±0.0447
ResNet-R 0.9780±0.0034 0.2566±0.0611 0.2745±0.0089 0.3054±0.0095

SP-S

GoogLeNet 0.9221±0.0321 0.3524±0.0926 0.5056±0.0208 0.1616±0.0132
GoogLeNet-R 0.9894±0.0069 0.3468±0.0424 0.4281±0.0082 0.1260±0.0039

ResNet 0.9633±0.0188 0.4649±0.1182 0.5959±0.0226 0.2581±0.0173
ResNet-R 0.9891±0.0073 0.3666±0.0660 0.4699±0.0075 0.1459±0.0041

SP-L

GoogLeNet 0.6210±0.1021 0.3390±0.2194 0.4078±0.1354 0.1456±0.0595
GoogLeNet-R 0.6540±0.1361 0.3344±0.1729 0.4130±0.0817 0.1265±0.0434

ResNet 0.8239±0.0718 0.4158±0.2827 0.4846±0.1493 0.2344±0.0885
ResNet-R 0.6867±0.1276 0.3493±0.2066 0.4485±0.0861 0.1481±0.0528

LIME

GoogLeNet 0.5862±0.0467 0.3260±0.1458 0.5844±0.0458 0.1352±0.0227
GoogLeNet-R 0.7125±0.0363 0.3331±0.1030 0.3832±0.0432 0.1340±0.0220

ResNet 0.5552±0.0491 0.2951±0.1565 0.7224±0.0421 0.1800±0.0281
ResNet-R 0.6722±0.0401 0.3301±0.1361 0.4549±0.0424 0.1437±0.0223

MP

GoogLeNet 0.7412±0.0697 0.2386±0.1458 0.5345±0.0402 0.1275±0.0278
GoogLeNet-R 0.9572±0.0432 0.2875±0.0725 0.4001±0.0176 0.1222±0.0086

ResNet 0.7221±0.1019 0.2651±0.1892 0.6184±0.0556 0.2064±0.0524
ResNet-R 0.9476±0.0572 0.2928±0.0941 0.4328±0.0226 0.1407±0.0121

Table S1: The results in this table are the numeric format of Fig. 5. Compared to regular models, robust classifiers
(GoogLeNet-R and ResNet-R) are more robust in the attribution space (i.e. higher SSIM scores) and also more robust in
the downstream accuracy space (i.e. smaller stds across three different accuracy metrics: Localization error, Deletion, and
Insertion).



Figure S9: The total-loss plots (L1 + TV + softmax) when running MP optimization algorithm (using a ResNet and ResNet-
R classifier) on the reference studio couch image in Fig. 4b. The loss curve for ResNet-R converges quickly after 10 steps
while MP loss curve often fluctuates (here, peaked at around step 100).



(a) ResNet

(b) ResNet-R

Figure S10: Evolution of attribution maps generated from a 450-step MP optimization run for a studio couch image using
ResNet (a) and ResNet-R (b) models. This figure is an extension of Fig. 4b. The attribution maps for ResNet-R model (b)
converges to the optimum mask in just ⇠ 10 iterations whereas the mask in the ResNet model are very inconsistent and
keep fluctuating among differernt iterations. For instance, the ResNet (a) masks becomes noisy iteration 289, 309, 319, and
449 despite being stable at 209, 379 and 409 iterations. These qualitatively heatmaps are consistent with the quantitative
loss-over-iteration plots (Fig. S9) where the ResNet loss curve oscillates while the ResNet-R curve converges early.



Input image 5⇥ 5 17⇥ 17 29⇥ 29 41⇥ 41 53⇥ 53
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(a) Average similarity of heatmaps across
the entire dataset when the patch size
changes.

HOG:0.1095

HOG:0.2203
(b) SP heatmaps for ResNet & ResNet-R change entirely for different patch
sizes.

Figure S11: Sliding Patch (SP) attribution maps vary largely—both quantitatively (a) and qualitatively (b)—when the patch

size changes. The stride was 3 for all cases.
Right panel: As the patch size increases, we observe the attribution values are higher (i.e. higher-intensity heatmaps), for
both ResNet and ResNet-R (b).
Left panel: On average, across the dataset, we observe low similarity, under all three metrics, across the generated heatmaps
(for both ResNet and ResNet-R) when the patch size changes (a). See Fig. S15 for more examples of this behavior.
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Input image NSG=50 NSG=100 NSG=200 NSG=500 NSG=800 Diff (vi – ii)

(a) Average robustness across the dataset

SSIM: 0.3633 L1 : 2686.75

SSIM: 0.9167 L1 : 480.13

(b) SG heatmaps for ResNet-R are more consistent compared to those for ResNet.

Figure S12: On average, across the dataset, SmoothGrad explanations for robust classifiers are almost perfectly consistent
upon varying the sample size NSG 2 {50, 100, 200, 500, 800} i.e. GoogLeNet-R and ResNet-R similarity scores are near 1.0
(a). However, the same heatmaps for regular classifiers are substantially more sensitive (a). We show here the input image
(i) that yields the largest difference (among the dataset) between the SSIM score for ResNet-R heatmaps (0.9167) and that
for ResNet heatmaps (0.3633). While SG heatmaps may appear qualitatively consistent, the pixel-wise variations (e.g. see
column vii—the results of subtracting ii from vi) may cause issues for applications that require pixel-level precision.



Figure S13: Compared to the gradients of regular classifiers (darker red and green), the gradients of robust classifiers (lighter
red and green) are consistently more invariant before and after the addition of noise to the input image under all three
similarity metrics (higher is better).



(a) Input image (b) Grad (c) NSG=50 (d) NSG=100 (e) NSG=200 (f) NSG=500 (g) NSG=800 (h) GB [49] (i) Robust Grad

Figure S14: This figure is an extension to Fig. 2. Qualitative trend showing the increase in similarity between the attribution
maps from SmoothGrad (SG) of ResNet (c—g) and vanila gradient (Grad) of ResNet-R (i) as the number of samples NSG

increases. Below each heatmap is the SSIM similarity score between that heatmap and the heatmap in column (i). As the
sample size NSG increases, SG attribution maps of ResNet become increasingly more similar, under SSIM, to the gradient
heatmaps of ResNet-R, a completely different network. Additionally, by comparing column (h) and (i), one might conclude
that ResNet and ResNet-R behave similarly (because the heatmaps are similar both qualitatively and quantitatively under
SSIM). However, these are two completely distinct networks with different training regimes and their differences can be seen
by comparing column (b) and (i). In sum, de-noising heatmaps, e.g. using SG or GB, may cause misinterpretation.



(a) Input image (b) 5⇥ 5 (c) 17⇥ 17 (d) 29⇥ 29 (e) 41⇥ 41 (f) 53⇥ 53

Figure S15: Sliding-Patch (SP) attribution maps are very sensitive to different patch sizes (Sec. 4.4.1). Across the dataset,
the reference images had the lowest Pearson correlation of HOG features among the ResNet heatmaps. For some images
with huge objects (e.g. the image of a white fence in row 2), we do not observe any significant probability drop even for a
patch size of 53⇥ 53 (f) and hence the attribution values are almost zero. This observation underlines an important challenge
of choosing the right patch size when using SP.



Input bR=5 bR=10 bR=30 Input bR=5 bR=10 bR=30 Input bR=5 bR=10 bR=30

(a) ResNet

(b) ResNet-R

Figure S16: Attribution maps of ResNet (a) become more scattered as we increase the Gaussian blur radius bR (from left
to right) in the MP sensitivity experiment (Sec. 4.3.2). In contrast, for ResNet-R, the attribution maps become smoother as
the blur radius increases. The reference images here were randomly chosen.



Input 500 1000

LIME sample size | SSIM: 0.0602
Input seed=0 seed=1 seed=2 seed=3 seed=4

LIME random seed | SSIM: 0.2148
Input Niter=10 Niter=150 Niter=300 Niter=450

MP number of iterations | SSIM: 0.2869
Input bR=5 bR=10 bR=30

MP blur radius | SSIM: 0.1411
Input seed=0 seed=1 seed=2 seed=3 seed=4

MP random seed | SSIM: 0.0008
Input NSG=50 NSG=100 NSG=200 NSG=500 NSG=800

SG sample size | SSIM: 0.2127
Input �=0.1 �=0.2 �=0.3

SG Gaussian noise � | SSIM: 0.1182
Input 5⇥ 5 17⇥ 17 29⇥ 29 41⇥ 41 53⇥ 53

SP-L: large patch size changes | SSIM: 0.1939
Input 52⇥ 52 53⇥ 53 54⇥ 54

SP-S: small patch size changes | SSIM: 0.8007

(a) GoogleNet

Input 500 1000

LIME sample size | SSIM: 0.0918
Input seed=0 seed=1 seed=2 seed=3 seed=4

LIME random seed | SSIM: 0.1822
Input Niter=10 Niter=150 Niter=300 Niter=450

MP number of iterations | SSIM: 0.2676
Input bR=5 bR=10 bR=30

MP blur radius | SSIM: 0.0909
Input seed=0 seed=1 seed=2 seed=3 seed=4

MP random seed | SSIM: 0.0179
Input NSG=50 NSG=100 NSG=200 NSG=500 NSG=800

SG sample size | SSIM: 0.3633
Input �=0.1 �=0.2 �=0.3

SG Gaussian noise � | SSIM: 0.1399
Input 5⇥ 5 17⇥ 17 29⇥ 29 41⇥ 41 53⇥ 53

SP-L: large patch size changes | SSIM: 0.2011
Input 52⇥ 52 53⇥ 53 54⇥ 54

SP-S: small patch size changes | SSIM: 0.7729

(b) ResNet

Figure S17: Examples where the explanations are the most inconsistent, under SSIM similarity, when a hyperparameter
changes. Across the entire dataset, the reference images caused highest sensitivity (i.e. lowest SSIM scores) for different
attribution methods and their respective hyperparameter settings for both GoogLeNet (a) and ResNet (b).


