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Appendices
A. Experimental Setting

Section 3.2 of [39] explains the sampling procedure to
generate tasks from the Meta-Dataset [39], used during
both training and testing. This results in tasks with vary-
ing of number of shots/ways. Figure 9a and 9b show the
ways/shots frequency graphs at test time. For evaluating
on Meta-Dataset and mini/tiered-ImageNet datasets, we use
episodic training [36] to train models to remain consistent
with the prior works [3, 30, 36, 39]. We train for 110K
tasks, 16 tasks per batch, totalling 6,875 gradient steps us-
ing Adam with learning rate of 0.0005. We validate (on 8
in-domain and 1 out-of-domain datasets) every 10K tasks,
saving the best model/checkpoint for testing. Please visit
the Pytorch implementation of Simple CNAPS for details.

B. (Simple) CNAPS in Details
B.1. Auto-Regressive CNAPS

In [30], an additional auto-regressive variant for adapting
the feature extractor is proposed, referred to as AR-CNAPS.

(a) A FiLM layer. (b) A ResNet basic block with FiLM layers.

Figure E.9: (Left) A FiLM layer operating on convolutional feature maps indexed by channel ch. (Right) How a
FiLM layer is used within a basic Residual network block [14].
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Figure E.10: Adaptation network �f . R�ibjch and R�ibjch denote a vector of regularization weights that are
learned with an l2 penalty.

Figure E.10 shows the details of the adaptation network �f that generates the FiLM layer parameters
for each ResNet layer.

E.2 ResNet18 Architecture details

Throughout our experiments in Section 5, we use a ResNet18 [14] as our feature extractor, the
parameters of which we denote �. Table E.5 and Table E.6 detail the architectures of the basic block
(left) and basic scaling block (right) that are the fundamental components of the ResNet that we
employ. Table E.7 details how these blocks are composed to generate the overall feature extractor
network. We use the implementation that is provided by the PyTorch [52]3, though we adapt the code
to enable the use of FiLM layers.

Table E.5: ResNet-18 basic block b.

Layers
Input
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,1, �b,1)
ReLU
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,2, �b,2)
Sum with Input
ReLU

Table E.6: ResNet-18 basic scaling block b.

Layers
Input
Conv2d (3 � 3, stride 2, pad 1)
BatchNorm
FiLM (�b,1, �b,1)
ReLU
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,2, �b,2)
Downsample Input by factor of 2
Sum with Downsampled Input
ReLU

3https://pytorch.org/docs/stable/torchvision/models.html
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Figure 8: Architectural overview of the feature extrac-
tor adaptation network  f

�: Figure has been adapted from
[30] and showcases the neural architecture used for each
adaptation module  j

� (corresponding to residual block j)
in the feature extractor adaptation network  f

�.

(a) Number of Tasks vs. Ways (b) Number of Classes vs. Shots

Figure 9: Test-time distribution of tasks: a) Frequency
of number of tasks as grouped by the number of classes in
the tasks (ways). b) Frequency of the number of classes
grouped by the number examples per class (shots). Both
figures are for test tasks sampled when evaluating on the
Meta-Dataset [39].

As shown in Figure 10, AR-CNAPS extends CNAPS by in-
troducing the block-level set encoder g

ARj

� at each block
j. These set encoders use the output obtained by push-
ing the support S⌧ through all previous blocks 1 : j � 1

to form the block level set representation g
ARj

� (f
⌧j

✓ (S⌧ )).
This representation is then subsequently used as input to
the adaptation network  j

� in addition to the task represen-
tation g�(S⌧ ). This way the adaptation network is not just
conditioned on the task, but is also aware of the potential
changes in the previous blocks as a result of the adaptation
being performed by the adaptation networks before it (i.e.,
 1

� :  j�1
� ). The auto-regressive nature of AR-CNAPS al-

lows for a more dynamic adaptation procedure that boosts
performance in certain domains.

B.2. FiLM Layers

Proposed by [27], Feature-wise Linear Modulation
(FiLM) layers were used for visual question answering,
where the feature extractor could be conditioned on the
question. As shown in Figure 11, these layers are in-
serted within residual blocks, where the feature channels
are scaled and linearly shifted using the respective FiLM
parameters �i,ch and �i,ch. This can be extremely powerful
in transforming the extracted feature space. In our work and
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https://github.com/peymanbateni/simple-cnaps
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Figure 10: Overview of the auto-regresive feature extractor adaptation in CNAPS: in addition to the structure shown in
Figure 3, AR-CNAPS takes advantage of a series of pre-block set encoders g

ARj

� to furthermore condition the output of each
 j

� on the set representation g
ARj

� (f
⌧j

✓ (S⌧ )). The set representation is formed by first adapting the previous blocks 1 : j � 1,
then pushing the support set S through the adapted blocks to form an auto-regressive adapted set representation at block j.
This way, adaptive functions later in the pipeline are more explicitly aware of the changes made by the previous adaptation
networks, and can adjust better accordingly.

[30], these FiLM parameters are conditioned on the support
images in the task S⌧ . This way, the adapted feature ex-
tractor f⌧

✓ is able to modify the feature space to extract the
features that allow classes in the task to be distinguished
most distinctly. This is in particular very powerful when
the classification metric is changed to the Mahalanobis dis-
tance, as with a new objective, the feature extractor adap-
tation network  f

� is able to learn to extract better features
(see difference between with and without  f

� in Table 7 on
CNAPS and Simple CNAPS).

B.3. Network Architectures
We adapt the same architectural choices for the task en-

coder g�, auto-regressive set encoders gAZ1
� , ..., gAZJ

� and
the feature extractor adaptation network  f

� = { 1
�, ..., J

�}
as [30]. The neural architecture for each adaptation module
inside of  f

� has been shown in Figure 8. The neural con-
figurations for the task encoder g� and the auto-regressive
set encoders gAZ1

� , ..., gAZJ
� used in AR-CNAPS are shown

in Figure 12-a and Figure 12-b respectively. Note that for
the auto-regressive set encoders, there is no need for convo-
lutional layers. The input to these networks come from the
output of the corresponding residual block adapted to that
level (denoted by f

⌧j

✓ for block j) which has already been
processed with convolutional filters.

Unlike CNAPS, we do not use the classifier adaptation
network  c

�. As shown in Figure 12-c, the classification
weights adaptor  c

� consists of an MLP consisting of three
fully connected (FC) layers with the intermediary none-
linearity ELU, which is the continuous approximation to
ReLU as defined below:

ELU(x) =

⇢
x x > 0

ex–1 x  0

�
(6)

As mentioned previously, without the need to learn the
three FC layers in  c

�, Simple CNAPS has 788,485 fewer
parameters while outperforming CNAPS by considerable
margins.

C. Cross Validation
The Meta-Dataset [39] and its 8 in-domain 2 out-of-

domain split is a setting that has defined the benchmark
for the baseline results provided. The splits, between the
datasets, were intended to capture an extensive set of visual
domains for evaluating the models.

However, despite the fact that all past work directly rely
on the provided set up, we go further by verifying that our
model is not overfitting to the proposed splits and is able
to consistently outperform the baseline with different per-
mutations of the datasets. We examine this through a 4-
fold cross validation of Simple CNAPS and CNAPS on the
following 8 datasets: ILSVRC-2012 (ImageNet) [31], Om-
niglot [18], FGVC-Aircraft [22], CUB-200-2011 (Birds)
[41], Describable Textures (DTD) [2], QuickDraw [14],
FGVCx Fungi [35] and VGG Flower [25]. During each
fold, two of the datasets are exluded from training, and both
Simple CNAPS and CNAPS are trained and evaluated in
that setting.

As shown by the classification results in Table 6, in all
four folds of validation, Simple CNAPS is able to outper-
form CNAPS on 7-8 out of the 8 datasets. The in-domain,
out-of-domain, and overall averages for each fold noted in
Table 8 also show Simple CNAPS’s accuracy gains over
CNAPS with substantial margins. In fact, the fewer num-
ber of in-domain datasets in the cross-validation (6 vs. 8)
actually leads to wider gaps between Simple CNAPS and
CNAPS. This suggests Simple CNAPS is a more powerful
alternative in the low domain setting. Furthermore, using
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(b) A ResNet basic block with FiLM layers.

Figure E.9: (Left) A FiLM layer operating on convolutional feature maps indexed by channel ch. (Right) How a
FiLM layer is used within a basic Residual network block [14].

Figure E.10: Adaptation network �f . R�ibjch and R�ibjch denote a vector of regularization weights that are
learned with an l2 penalty.

Figure E.10 shows the details of the adaptation network �f that generates the FiLM layer parameters
for each ResNet layer.

E.2 ResNet18 Architecture details

Throughout our experiments in Section 5, we use a ResNet18 [14] as our feature extractor, the
parameters of which we denote �. Table E.5 and Table E.6 detail the architectures of the basic block
(left) and basic scaling block (right) that are the fundamental components of the ResNet that we
employ. Table E.7 details how these blocks are composed to generate the overall feature extractor
network. We use the implementation that is provided by the PyTorch [52]3, though we adapt the code
to enable the use of FiLM layers.

Table E.5: ResNet-18 basic block b.

Layers
Input
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,1, �b,1)
ReLU
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,2, �b,2)
Sum with Input
ReLU

Table E.6: ResNet-18 basic scaling block b.

Layers
Input
Conv2d (3 � 3, stride 2, pad 1)
BatchNorm
FiLM (�b,1, �b,1)
ReLU
Conv2d (3 � 3, stride 1, pad 1)
BatchNorm
FiLM (�b,2, �b,2)
Downsample Input by factor of 2
Sum with Downsampled Input
ReLU

3https://pytorch.org/docs/stable/torchvision/models.html
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Figure 11: Overview of FiLM layers: Figure is from [30]. Left) FiLM layer operating a series of channels indexed by ch,
scaling and shifting the feature channels as defined by the respective FiLM parameters �i,ch and �i,ch. Right) Placement of
these FiLM modules within a ResNet18 [10] basic block.

Classification Accuracy (%)
Model ILSVRC Omniglot Aircraft CUB DTD QuickDraw Fungi Flower

CNAPS 49.6±1.1 87.2±0.8 81.0±0.7 69.7±0.9 61.3±0.7 72.0±0.8 *32.2±1.0 *70.9±0.8
Simple CNAPS 55.6±1.1 90.9±0.8 82.2±0.7 75.4±0.9 74.3±0.7 75.5±0.8 *39.9±1.0 *88.0±0.8

CNAPS 50.3±1.1 86.5±0.8 77.1±0.7 71.6±0.9 *64.3±0.7 *33.5±0.9 46.4±1.1 84.0±0.6
Simple CNAPS 58.1±1.1 90.8±0.8 83.8±0.7 75.2±0.9 *74.6±0.7 *64.0±0.9 47.7±1.1 89.9±0.6

CNAPS 51.5±1.1 87.8±0.8 *38.2±0.8 *58.7±1.0 62.4±0.7 72.5±0.8 46.9±1.1 89.4±0.5
Simple CNAPS 56.0±1.1 91.1±0.8 *66.6±0.8 *68.0±1.0 71.3±0.7 76.1±0.8 45.6±1.1 90.7±0.5

CNAPS *42.4±0.9 *59.6±1.4 77.2±0.8 69.3±0.9 62.9±0.7 69.1±0.8 40.9±1.0 88.2±0.5
Simple CNAPS *49.1±0.9 *76.0±1.4 83.0±0.8 74.5±0.9 74.4±0.7 74.8±0.8 44.0±1.0 91.0±0.5

Table 6: Cross-validated classification accuracy results. Note that * denotes that this dataset was excluded from training,
and therefore, signifies out-of-domain performance. Simple CNAPS values in bold indicate significant statistical gains over
CNAPS.

these results, we illustrate that our gains are not specific to
the Meta-Dataset setup.

D. Ablation study of the Feature Extractor
Adaptation Network

In addition to the choice of metric ablation study ref-
erenced in Section 6.2, we examine the behaviour of the
model when the feature extractor adaptation network  f

�
has been turned off. In such setting, the feature extrac-
tor would only consist of the pre-trained ResNet18 [10]
f✓. Consistent to [30], we refer to this setting as ”No
Adaptation” (or “No Adapt” for short). We compare the
“No Adapt” variant to the feature extractor adaptive case
for each of the metrics/model variants examined in Section
6.2. The in-domain, out-of-domain and overall classifica-
tion accuracies are shown in Table 7. As shown, without
 f

� all models lose approximately 15, 5, and 12 percentage
points across in-domain, out-of-domain and overall accu-
racy, while Simple CNAPS continues to hold the lead es-
pecially in out-of-domain classification accuracy. It’s in-
teresting to note that without the task specific regulariza-
tion term (denoted as ”-TR”), there’s a considerable perfor-
mance drop in the “No Adaptation” setting; while when the
feature extractor adaptation network  f

� is present, the dif-
ference is marginal. This signifies two important observa-
tions. First, it shows the importance of of learning the fea-
ture extractor adaptation module end-to-end with the Ma-

halanobis distance, as it’s able adapt the feature space best
suited for using the squared Mahalanobis distance. Second,
the adaptation function  f

� can reduce the importance of
the task regularizer by properly de-correlating and normal-
izing variance within the feature vectors. However, where
this is not possible, as in the “No Adaptation” case, the all-
classes-task-level covariance estimate as an added regular-
izer in Equation 2 becomes crucial in maintaining superior
performance.

E. Projection Networks

We additionally explored metric learning where in ad-
dition to changing the distance metric, we considered pro-
jecting each support feature vector f⌧

✓ (xi) and query vector
f⌧

✓ (x⇤
i ) to a new decision space where then squared Maha-

lanobis distance was to be used for classification. Specif-
ically, we trained a projection network u� such that for
Equations 2 and 3, µk, ⌃⌧

k and ⌃⌧ were calculated based on
the projected feature vectors {u�(f⌧

✓ (xi))}xi2S⌧
k

as oppose
to the feature vector set {f⌧

✓ (xi)}xi2S⌧
k

. Similarly, the pro-
jected query feature vector u�(f⌧

✓ (x⇤
i )) was used for classi-

fying the query example as oppose to the bare feature vector
f⌧

✓ (x⇤
i ) used within Simple CNAPS. We define u� in our

experiments to be the following:

u�(f⌧
✓ (x⇤

i )) = W1(ELU(W2(ELU(W3f
⌧
✓ (x⇤

i ))))) (7)



Average Accuracy with  f
� (%) Average Accuracy without  f

� (%)
Metric/Model Variant In-Domain Out-Domain Overall In-Domain Out-Domain Overall
Negative Dot Product 66.9±0.9 53.9±0.8 61.9±0.9 38.4±1.0 44.7±1.0 40.8±1.0
CNAPS 69.6±0.8 59.8±0.8 65.9±0.8 54.4±1.0 55.7±0.9 54.9±0.9
Absolute Distance (L1) 71.0±0.8 65.4±0.8 68.8±0.8 54.9±1.0 62.2±0.8 57.7±0.9
Squared Euclidean (L2

2) 71.7±0.8 66.3±0.8 69.6±0.8 55.3±1.0 61.8±0.8 57.8±0.9
Simple CNAPS -TR 73.5±0.8 69.6±0.8 72.0±0.8 52.3±1.0 61.7±0.9 55.9±1.0
Simple CNAPS 73.8±0.8 69.7±0.8 72.2±0.8 56.0±1.0 64.8±0.8 59.3±0.9

Table 7: Comparing in-domain, out-of-domain and overall accuracy averages of each metric/model variant when feature
extractor adaptation is performed (denoted as ”with  f

�”) vs. when no adaptation is performed (denoted as ”without  f
�”).

Values in bold signify best performance in the column while underlined values signify superior performance of Simple
CNAPS (and the -TR variant) compared to the CNAPS baseline.
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Figure 12: Overview of architectures used in (Simple)
CNAPS: a) Auto-regressive set encoder g

ARj

� . Note that
since this is conditioned on the channel outputs of the con-
volutional filter, it’s not convolved any further. b) Task en-
coder g� that mean-pools convolutionally filtered support
examples to produce the task representation. c) architec-
tural overview of the classifier adaptation network  c

� con-
sisting of a 3 layer MLP with a residual connection. Dia-
grams are based on Table E.8, E.9, and E.11 in [30].

where ELU, a continuous approximation to ReLU as previ-
ously noted, is used as the choice of non-linearity and W1,

Average Classification Accuracy (%)
Fold Model In-Domain Out-Domain Overall

1 CNAPS 70.1±0.4 51.6±0.4 65.5±0.4
1 S. CNAPS 75.7±0.3 64.0±0.4 72.7±0.3
2 CNAPS 69.3±0.4 48.9±0.3 64.2±0.4
2 S. CNAPS 74.3±0.4 69.3±0.4 73.0±0.3
3 CNAPS 68.4±0.4 48.5±0.4 63.4±0.4
3 S. CNAPS 71.8±0.4 67.3±0.5 70.7±0.4
4 CNAPS 67.9±0.3 51.0±0.7 63.7±0.4
4 S. CNAPS 73.6±0.3 62.6±0.6 70.9±0.4

Avg CNAPS 69.0±1.4 50.0±1.8 64.2±1.6
Avg S. CNAPS 73.8±1.3 65.8±1.8 71.8±1.4

Table 8: Cross-validated in-domain, out-of-domain and
overall classification accuracies averaged across each fold
and combined. Note that for conciseness of the table, Sim-
ple CNAPS has been shortened to ”S. CNAPS”. Simple
CNAPS values in bold indicate statistically significant gains
over CNAPS.

Average Classification Accuracy (%)
Model In-Domain Out-Domain Overall
Simple CNAPS +P 72.4±0.9 67.1±0.8 70.4±0.8
Simple CNAPS 73.8±0.8 69.7±0.8 72.2±0.8

Table 9: Comparing the in-domain, out-of-domain and
overall classification accuracy of Simple CNAPS +P (with
projection networks) to Simple CNAPS. Values in bold
show the statistically significant best result.

W2 and W3 are learned parameters.
We refer to this variant of our model as “Simple CNAPS

+P” with the “+P” tag signifying the addition of the pro-
jection function u�. The results for this variant of Simple
CNAPS are compared to the base Simple CNAPS in Table
9. As shown, the projection network generally results in
lower performance, although not to statistically significant
degrees in in-domain and overall accuracies. Where the ad-
dition of the projection network results in substantial loss
of performance is in the out-of-domain setting with Sim-
ple CNAPS +P’s average accuracy of 67.1±0.8 compared to
69.7±0.8 for the Simple CNAPS. We hypothesize the sig-
nificant loss in out-of-domain performance to be due to the
projection network overfitting to the in-domain datasets.


