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We provide more details on the training and evaluation of
Single-View 3D Shape Reconstruction (SVR) on the TDS
dataset in Section 1; we show additional results for the SVR
task on the synthetic ShapeNet dataset in Section 2; we per-
form an ablation study of the components of the deforma-
tion loss Ldef in Section 3; we analyze thoroughly the de-
formation properties of the predicted patches in Section 4;
and finally we compare the precision of analytically and ap-
proximately computed normals in Section 5.

1. Training and Evaluation of SVR on TDS

As described in [1], the TDS dataset was recorded as a
set of video sequences. Therefore, it is necessary to split the
dataset properly into training, validation and testing subsets
so that the testing samples do not leak into the training set.
Furthermore, to follow the evaluation protocol introduced in
[1], data preprocessing and postprocessing steps are needed.

1.1. Dataset Splits

As described in Section 5.2 of the paper, we selected
two object categories for which the most data samples are
available, a piece of a cloth and a T-Shirt. We use 85%
of the samples for training, 5% for validation, and 10%
for testing. For the cloth object, one full video sequence
(Lr top edge 3) was removed from the training set, and
split into validation (the first 500 frames) and testing (re-
maining 529 frames). There are not enough T-shirt se-
quences to do the same. We therefore split one sequence
(Lr front) and exploited the first 250 frames for training,
the following 98 frames for validation and the remaining
200 for testing.

1.2. Data Preprocessing and Postprocessing

To evaluate the reconstruction quality of AN and OURS
for SVR on the TDS dataset, some preprocessing and post-
processing steps are necessary.

The TDS dataset samples are centered around point c =[
0 0 1.1

]>
, which is out of reach of the activation func-

tion tanh that AN uses in its last layer. Therefore, we trans-
lated all the data samples by −c.

In [1], which introduced the TDS dataset, the authors
align the predicted sample with its GT using Procrustes
alignment [5] before evaluating the reconstruction quality.
Since we do not have correspondences between the GT
and predicted points, we used the Iterative Closest Point
(ICP) [3] algorithm to align the two point clouds. This al-
lows rigid body transformations only.

2. Single-view Reconstruction on ShapeNet
For the sake of completeness, we ran the experiments

for the SVR task not only on the real-world TDS dataset, as
presented in Section 5.6 of the paper, but also on the syn-
thetic ShapeNet dataset. We trained both AN and OURS
using 25 patches, 2500 points randomly sampled from the
GT, and the same number is predicted by the models. As
before, we trained both models separately on the object cat-
egories airplane, chair, car, couch and cellphone, and jointly
on all the categories. We used the same synthetic renderings
as in [4].

We report our results in Table 1. Similarly to the
PCAE on ShapeNet experiments, OURS delivers compara-
ble CHD precision but significantly higher quality in terms
of the predicted normals, number of collapsed patches and
amount of overlap, as is further demonstrated in Figure 1.

3. Deformation Loss Term Ablation Study
We have seen that the deformation loss term defined as

Ldef = αELE + αGLG + αskLsk + αstrLstr prevents the
predicted patches from collapsing. Here we perform an ab-
lation study of the individual components LE ,LG,Lsk and
Lstr and show how each of them affects the resulting defor-
mations that the patches undergo.

We carry out all the experiments on SVR using the
cloth object from the TDS dataset and the same train-
ing/validation/testing splits as before. We employ OURS
and the original loss function L = LCHD+αdefLdef+αolLol
(with αdef = 0.001 and αol = 0.1, as before).



Table 1. OURS vs AN trained for SVR on ShapeNet. Both
models were trained individually on 5 ShapeNet categories (plane,
chair, car, couch, cellphone) and jointly on all of them (all). While
CHD is comparable for both methods, OURS delivers better nor-
mals and lower patch overlap.

obj. method CHD mae m
(0.01)
olap m

(0.05)
olap m

(0.1)
olap mcol

plane AN 2.43 27.12 9.43 16.34 18.93 0.104
OURS 2.76 24.36 4.26 8.99 12.02 0.000

chair AN 8.65 41.54 8.30 13.32 16.00 4.320
OURS 7.67 41.17 2.77 5.99 8.41 0.000

car AN 10.40 40.09 4.10 8.63 11.60 0.010
OURS 4.36 22.76 2.20 4.51 6.76 0.000

couch AN 6.33 28.73 6.69 13.16 17.36 0.576
OURS 6.64 26.01 3.04 6.56 9.74 0.000

cellphone AN 3.90 15.20 7.60 16.73 20.01 0.221
OURS 4.07 13.73 2.93 6.53 9.13 0.000

all AN 10.09 37.92 9.56 15.9 18.43 3.570
OURS 9.42 34.51 3.6 7.7 10.44 0.000

Figure 1. Patch overlap for OURS and AN trained for SVR on
the ShapeNet dataset. We plot m(t)

col as a function of t.

Table 2. Configurations of the ablation study. The components
of the Ldef loss are either turned on or off using their corresponding
hyperparameters.

Experiment αE αG αsk αstr

free 0 0 0 0
no collapse 1 1 0 0
no skew 1 1 1 0
no stretch 1 1 0 1
full 1 1 1 1

To identify the contributions of the components of Ldef,
we switch them on or off by setting their corresponding hy-
perparameters αE , αG, αsk and αstr to either 0 or 1, and for
each configuration we train OURS from scratch until con-
vergence. We list the individual configurations in Table 2.

Fig 2 depicts the qualitative results for all 5 experiments
on 5 randomly selected test samples. We discuss the indi-
vidual cases below:

Free: The Ldef term is completely switched off, which re-
sults in high distortion mappings and many 0D point col-
lapses and 1D line collapses.

No collapse: We only turn on the components LE and
LG, which by design prevent any collapse and encourage
the amount of stretching along either of the axes to be uni-
form across the whole area of a patch. However, the patches
still tend to undergo significant stretch along one axis (light
red patch) and/or display a high amount of skew (light blue
and light orange patch).

No skew: Adding the Lsk component to LE and LG (but
leaving out Lstr) prevents the patches from skewing, result-
ing in strictly orthogonal rectangular shapes. However, the
patches tend to stretch along one axis (light blue and light
red patch). If skew is needed to model the local geometry,
the patches stay rectangular and rotate instead (dark blue
patch).

No stretching: Adding the Lstr component to LE and LG

(but leaving out Lsk) results in a configuration where the
patches prefer to undergo severe skew (cyan and dark green
patch), but preserve their edge lengths.

All: Using the full Ldef term, with all its components
turned on, results in strictly square patches with minimum
skew or stretching.

4. Distortion Analysis
In the previous section, we showed that the individ-

ual types of deformations that the patches may undergo—-
stretching, skewing and in extreme cases collapse—-can be
effectively controlled by suitable combination of the com-
ponents of the loss term Ldef. In this section, we present
a different perspective on the distortions which the patches
undergo. We focus on a texture mapping task where we
show that using the Ldef to train a network helps learn map-
pings with much less distortion. Furthermore, we inspect
each patch individually and analyze how the distortion dis-
tributes over its area.

4.1. Regularity of the Patches

We experiment on PCAE using the ShapeNet dataset,
on which we train AN and OURS as in Section 5.6., i.e.,
using the full loss function L = LCHD + αdefLdef + αolLol
with αdef = 0.001 and αol = 0.1 and with αE = αG =
αsk = 1, αstr = 0. Furthermore, we train one more model,
OURS-strict, which is the same as OURS except that we
set αstr = 1. In other words, OURS-strict uses the full Ldef
term where even stretching is penalized.

To put things in perspective, when considering the ab-
lation study of Section 3, AN corresponds to the free con-
figuration, OURS to the no skew configuration and OURS-
strict to the full configuration.



Figure 2. Qualitative results of the ablation study. Each row depicts a randomly selected sample from the test set and each column
corresponds to one experimental configuration. See the text for more details.

Figs. 3 and 4 depict qualitative reconstruction results for
various objects from ShapeNet, where we map a regular
checkerboard pattern texture to every patch. Note that while
AN produces severely distorted patches, OURS introduce a
truly regular pattern elongated along one axis (since stretch-
ing is not penalized) and OURS-strict delivers nearly iso-
metric patches.

Note, however, the trade-off between the shape preci-
sion and regularity of the mapping (i.e., the amount of dis-
tortion). When considering the two extremes, AN deliv-
ers much higher precision than OURS-strict. On the other
hand, OURS appears to be the best choice as it brings the
best of both worlds — it delivers high precision reconstruc-

tions while maintaining very low distortion mappings.

4.2. Intra-patch Distortions

To obtain more detailed insights into how the patches
deform, we randomly select a test data sample from the
ShapeNet plane object category and analyze the individ-
ual types of deformations that each patch predicted by AN
and OURS undergoes. We are interested in 4 quantities
DE , DG, Dsk, Dstr, which are proportional to the compo-
nents LE ,LG,Lsk,Lstr of the deformation loss term Ldef.

Fig. 5 depicts the spatial distribution of the values com-
ing from all these 4 quantities over all 25 patches predicted
by AN and OURS. Note that while the patches predicted



Figure 3. Qualitative results of ShapeNet objects plane and chair reconstruction by AN, OURS and OURS-strict.

by AN are subject to all the deformation types and yield
extremely high values, which change abruptly through-
out each predicted patch, the patches predicted by OURS
undergo very low distortions, which are mostly constant
throughout the patches.

The exception is the Dstr quantity, which has high values
for all the patches. This is due to the fact that OURS does
not penalize stretching. This can be seen in Fig. 6, which
depicts the distribution of the values of the terms E and G

coming from the metrics tensor g =

[
E F
F G

]
across all the

patches predicted by OURS. All the patches corresponding
to E yield high values while the ones corresponding to G
low values. This means that the patches prefer to stretch
only along the u-axis in the 2D parametric UV space (recall

that E =
∥∥∥∂fw

∂u

∥∥∥2).



Figure 4. Qualitative results of ShapeNet objects car, couch and chair reconstruction by AN, OURS and OURS-strict.

5. Approximate Normal Estimation

As discussed in Section 5.6, an alternative to exact ana-
lytical computation of the per-point normals consists of es-
timating the normals approximately, e.g., using the popu-
lar covariance-based method [2], which computes a covari-
ance matrix on a point neighborhood, performs an eigende-

composition of this matrix and takes the eigenvector corre-
sponding to the smallest eigenvalue as normal estimate.

The point neighborhood can be represented either as a set
of k nearest points or as a set of points lying within a given
distance. These two methods rely on the hyperparameters
k ∈ N and r ∈ R, respectively, and will be referred to as
COV-kNN and COV-radius.
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Figure 5. Spatial distribution of the quantities DE , DG, Dsk, Dstr across all the 25 patches predicted by AN and OURS for a single
test data sample from ShapeNet dataset.
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Figure 6. Spatial distribution of metric tensor g quantities E and G over all the 25 patches predicted by OURS on a single data
sample from ShapeNet dataset.

For fair and complete comparison, we use the covari-
ance method [2] to compute the approximate normals from
the point clouds predicted by AN in both the PCAE on
ShapeNet and SVR on TDS experiments. Since the selec-
tion of the neighborhood method and the correct value for
the corresponding hyperparameter strongly affects the pre-

cision of the normals estimate, we ran a grid search on a
validation set separately for all the object categories in both
experiments. The hyperparameter values corresponding to
the lowest validation error are reported in Table 3 and used
for subsequent evaluations.

Table 4 provides the resulting angular errors mae for



both methods, COV-kNN and COV-radius, ran on the pre-
dictions of AN and compares them to the mae evaluated on
the analytically computed normals on the prediction of both
AN and OURS (which are reported in Tables 3 and 4 in the
main paper). OURS outperforms COV-kNN in all experi-
ments and COV-radius in all but one. This further motivates
the use of our framework, which by allowing for analytical
normal computation, not only yields higher precision but
also avoids the necessity of tedious and costly hyperparam-
eter search and the need for an extra post-processing step.

Table 3. Values of the hyperparameters k and r corresponding to
the lowest mae error found on a validation set separately for each
object category.

PCAE on ShapeNet SVR on TDS
method plane chair car couch cellphone cloth tshirt

COV-kNN (k) 40 50 20 20 20 100 100
COV-radius (r) 0.1 0.25 0.15 0.15 0.2 0.075 0.075

Table 4. Comparison of the mae metric evaluated for every object
category using the approximate normals predicted by the COV-
kNN and COV-radius methods using the hyperparameters listed
in Table 3 and using the analytically computed normals (AN and
OURS).

PCAE on ShapeNet SVR on TDS
method plane chair car couch cell. cloth tshirt

COV-kNN 19.01 25.95 18.29 19.59 16.70 46.12 39.84
COV-radius 19.28 27.00 20.57 22.23 16.86 22.78 19.79

AN 21.26 24.49 18.08 16.83 10.29 47.42 42.12
OURS 17.90 23.06 17.75 14.90 9.64 20.06 20.52
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