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1. Implementation Details
We implemented our attention modules within the Ten-

sorflow Object Detection API open-source Faster-RCNN
architecture with Resnet 101 backbone [2]. Faster-RCNN
optimization and model parameters are not changed be-
tween the single-frame baseline and our experiments, and
we ensure robust single-frame baselines via hyperparameter
sweeps. We train on Google TPUs (v3) [3] using Momen-
tumSGD with weight decay 0.0004 and momentum 0.9. We
construct each batch using 32 clips, drawing four frames for
each clip spaced 1 frame apart and resizing to 640 × 640.
Batches are placed on 8 TPU cores, colocating frames from
the same clip. We augment with random flipping, ensur-
ing that the memory banks are flipped to match the current
frames to preserve spatial consistency. All our experiments
use a softmax temperature of T = .01 for the attention
mechanism, which we found in early experiments to out-
perform .1 and 1.

2. Dataset Statistics and Per-Class Perfor-
mance

Each of the real-world datasets (Snapshot Serengeti, Cal-
tech Camera Traps, and CityCam) has a long-tailed distribu-
tion of classes, which can be seen in Figure 3. Dealing with
imbalanced data is a known challenge across machine learn-
ing disciplines [1, 5], with rare classes (classes not well-
represented during training) frequently proving difficult to
recognize.

In Figure 5 in the main text, we demonstrate that the
per-class performance universally improves for Snapshot
Serengeti (SS). In Figure 1, we show the per-class per-
formance for Caltech Camera Traps (CCT). and CityCam
(CC). Performance on CCT improves for all classes from
the single frame model. We see that for one class in CC,
“Middle Truck”, our method performs slightly worse; How-
ever, this class is relatively ambiguous, as the concept of
“middle” size is not well-defined.

3. Spatiotemptoral Encodings
We normalize the spatial and temporal information for

each object we include in the contextual memory bank. In
order to do so, we choose to use a single float between 0

(a) Caltech Camera Traps.

(b) CityCam.

Figure 1: Performance per class. Performance comparison from
single-frame to our memory-based model. Note this reports mAP for each
class averaged across IoU thresholds, as popularized by the COCO chal-
lenge [4].

and 1 to represent each of: year, month, day, hour, minute,
x center coordinate, y center coordinate, object width, and
object height.
We normalize each element as follows:

• Year: We select a reasonable window of possible years
covered by our data, 1990-2030. We normalize the
year within that window, representing the year in ques-
tion as year−1990

2030−1990 .

• Month: We normalize the month of the year by 12
months, i.e. month

12 .

• Day: We normalize the day of the month by 31 days
for simplicity, regardless of how many days there are
in the month in question, i.e. day

31 .
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(a) Before.

(b) After.

Figure 2: Our system is robust to a static camera being accidentally
shifted. Before and after example of a camera that had been bumped by an
animal. The images are from the same camera. The first image was taken
August 8th 2010, the next August 9th 2010. We find that the system can
still utilize contextual information across a camera shift.

• Hour: We normalize the hour of the day by 24 hours,
i.e. hour

24 .

• Minute: We normalize the minute of the hour by 60
minutes, i.e. minute

60 .

• X Center Coordinate: We normalize the x coordinate
pixel location by the width of the image in pixels, i.e.
x center location (pixels)

image width (pixels)

• Y Center Coordinate: We normalize the y coordinate
pixel location by the height of the image in pixels, i.e.
y center location (pixels)
image height (pixels)

• Width of Object: We normalize the object width
in pixels by the width of the image in pixels, i.e.
object width (pixels)
image width (pixels)

• Height of Object: We normalize the object height
in pixels by the height of the image in pixels, i.e.
object height (pixels)
image height (pixels)

4. Camera Movement
Our system has no hard requirements about the camera

being static, instead we leverage the fact that it is static

(a) Snapshot Serengeti.

(b) Caltech Camera Traps.

(c) CityCam.

Figure 3: Imbalanced class distributions. Images per category for each
of the three datasets. Note the y-axis is in log scale.

implicitly through our memory bank to provide appropri-
ate and relevant context. We find that our system is robust
to static cameras that get moved, unlike traditional back-
ground modeling approaches. In Snapshot Serengeti in par-
ticular, the animals have a tendency to rub against the cam-
era posts and cause camera shifts over time. Figure 2 shows
a “before and after” example of a camera being bumped or



Figure 4: Visualizing attention. In each example, the keyframe is shown at a larger scale, with Context R-CNN’s detection, class, and score shown in
red. We consider a time horizon of one month, and show the images and boxes with highest attention weights (shown in green). The model pays attention
to objects of the same class, and the distribution of attention across time can be seen in the timelines below each example.

moved.

5. Attention Visualization
In Figure 4 in the main text, we visualize attention over

time for two examples from Snapshot Serengeti. In Figure
4 we show examples from Caltech Camera Traps. Similarly
to the visualizations of attention on SS, we see that attention
is adaptive to the most relevant information, paying atten-
tion across time as needed. The model consistently learns
to attend to objects of the same class.

In Figure 5, we visualize how Context R-CNN learns to
learn and attend to unlabeled background classes, namely
rocks and bushes. Remember that these exact camera lo-
cations were never seen during training, so the model has
learned to use temporal context to determine when to ig-
nore these salient background classes. It learns to cluster
background objects of a certain type, for example bushes,
across the frames at a given location. Note that these at-
tended background objects are not always the same instance
of the class, which makes sense as background classes may
maintain visual similarity within a scene even if they aren’t
the exact same instance of that type. Species of plants or
types of rock are often geographically clustered.
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Figure 5: Visualizing attention on background classes. In each example, the keyframe is shown at a larger scale, with Context R-CNN’s detection,
class, and score shown in red. We consider a time horizon of one month, and show the images and boxes with highest attention weights (shown in green).
The first example is from SS, it shows a detected bush (an unlabeled, background class), and shows that Context R-CNN attends to the same bush over time,
as well as different bushes in the frame. In the second example, from CCT, we see a similar situation with the background class “rock.”


