
Acknowledgements
We would like to thank Blake Hechtman, Ryan Sepassi,

and Tong Shen for their help with software changes needed
to make our algorithms to work well on TPUs. We would
also like to thank Berkin Akin, Okan Arikan, Yiming Chen,
Zhifeng Chen, Frank Chu, Ekin D. Cubuk, Matthieu Devin,
Suyog Gupta, Andrew Howard, Da Huang, Adam Kraft,
Peisheng Li, Yifeng Lu, Ruoming Pang, Daiyi Peng, Mark
Sandler, Yonghui Wu, Zhinan Xu, Xin Zhou, and Menglong
Zhu for helpful feedback and discussions.

A. Variance of ProxylessNAS-Mobile Model
For stand-alone model training, we estimated the vari-

ance in accuracy across runs by starting five identical runs
of the ProxylessNAS-Mobile model. We repeated the ex-
periment in two configurations. In the first configuration,
we trained for 90 epochs and then evaluated the models
on our validation set; the resulting validation set accuracies
were [76.1%, 76.4%, 76.4%, 76.5%, 76.2%]. In the second
configuration, we trained for 360 epochs and then evalu-
ated on our test set; the resulting test set accuracies were
[75.0%, 75.0%, 74.9%, 74.9%, 75.0%].7

B. Average vs Argmax Inference Time
For the absolute value reward function with a constant

RL learning rate, we argued that the reason models didn’t
converge to the target inference time was because of dif-
ferences between the inference times of randomly sampled
models vs. the argmax model taken by selecting the most
likely choice for each categorical decision. To test this hy-
pothesis, we compared the two at the end of a search. We
obtained an average time from randomly sampled models
using an exponential moving average with a decay rate of
0.9 which was updated every 100 training steps. While av-
erage times consistently converged to the desired inference
time target, the inference time from the argmax could differ
by 8 ms or more.

� Avg. Time ArgMax Time
-0.01 134.2 ms 128.8 ms
-0.02 104.3 ms 92.2 ms
-0.05 84.2 ms 75.8 ms
-0.10 83.1 ms 78.3 ms
-0.20 84.0 ms 82.7 ms
-0.50 84.2 ms 83.4 ms
-1.00 83.2 ms 85.5 ms

Table 11: Average vs. argmax inference times when using the
absolute value reward function without a learning rate schedule
for the RL controller.

7Accuracies on the validation set are typically a few percentage points
higher than on the test set.

C. Rematerialization
If op warmup is implemented naively then the activa-

tion memory required to train the shared model weights
grows linearly with the number of possible operations in
the search space. If many different possible operations can
be simultaneously enabled at each position in the network,
the model will be unable to fit in memory. We use remateri-
alization to address this issue. During the forward pass, we
apply N different operations to the same input, and average
their outputs. Rather than retaining the intermediate results
of these operations for use during the backwards pass, we
throw them away. During the backwards pass, we recom-
pute the intermediate results for one operation at a time. In
practice, this leads to a large decrease in memory require-
ments, as we only need to retain a single input tensor and a
single output tensor for each choice block. For example,
in our reproduction of the original ProxylessNAS search
space with a per-core batch size of 128, rematerialization
decreases the memory needed to train a reproduction of the
original ProxylessNAS search space from 29.5 GiB to 4.8
GiB. This memory-saving technique, which allowed us to
scale to larger search spaces, came at the cost of roughly a
30% increase in search times to perform a second forward
pass for each of the N possible operations.

Finally, we note that although this rematerialization trick
was developed with our version of op rampup in mind, it
could also be used to reduce the memory requirements of
a method such as DARTS [24] which requires us to eval-
uate every possible operation in the search space at every
training step.

D. Discussion of Absolute Value Reward
We now contrast a typical architecture search workflow

with the MnasNet-Soft reward function against a work-
flow with our new Absolute Value reward function. For
the MnasNet-Soft reward function, the first step when us-
ing a new search space or training configuration is to tune
the RL controller’s cost exponent � to obtain inference
times which are reasonably close to our target latency. In
our early experiments, we found that grid searching over
� 2 {�0.03,�0.04,�0.05,�0.06,�0.07,�0.08,�0.09}
worked well in practice. However, running this grid search
increased the cost of architecture search experiments by a
factor of 7.

Even after we fixed the value of �, the latencies and
accuracies of architectures found by a search could vary
significantly from one run to the next. For example, in
our reproduction of the ProxylessNAS search space with
� = �0.07, five identical architecture search experiments
returned latencies which ranged from 74ms to 82ms. We
also saw a wide variance in accuracies across the different
architectures, ranging from 75.8% to 76.4% on the valida-



tion set and 74.2% to 75.1% on the test set. Larger models
generally had better accuracies, indicating that the problem
stemmed from our inability to precisely control the latency.

This helped motivate our Absolute Reward function,
which allowed the RL controller to reliably find architec-
tures whose latencies were close to the target. For example,
the low variance of searched TuNAS model latencies in Ta-
bles 4, 5, 6, and 12 shows we can reliably find high-quality
architectures within 1 ms of the target across several dif-
ferent search configurations, even when we reuse the same
search hyper-parameters between different setups.

As an alternative to the absolute value reward function,
we also considered searching for an architecture close to
the inference time target, and then uniformly scaling up or
down the number of filters in every layer. While this helped
reduce the variance of searched model accuracies, it did not
remove the need to tune the RL cost exponent, since we
needed to find a model that was already close to the infer-
ence time target to get good results. Furthermore, finding
the right scaling factor to hit a specific inference time tar-
get added an extra step to experiments in this setup. The
absolute value reward function gave us high-quality archi-
tectures with a more streamlined search process.

E. Experimental Setup
E.1. Standalone Training for Classification

During stand-alone model training, each model was
trained using distributed synchronous SGD on TensorFlow
with a Cloud TPU v2-32 or Cloud TPU v3-32 instance (32
TPU cores) and a per-core batch size of 128. Models were
optimized using RMSProp with momentum = 0.9, decay
rate = 0.9, and epsilon = 0.1. The learning rate was annealed
following a cosine decay schedule without restarts [25],
with a maximum value of 2.64 globally (or 0.0825 per core).
We linearly increased the learning rate from 0 over the first
2.5% of training steps [11]. Models were trained with batch
normalization with epsilon = 0.001 and momentum = 0.99.
Convolutional kernels were initialized with He initialization
[12],8 while bias variables were initialized to 0. The final
fully connected layer of the network was initialized from a
random normal distribution with mean 0 and standard de-
viation 0.01. We applied L2 regularization with a strength
of 0.00004 to all convolutional kernels except the final fully
connected layer of the network. All models were trained
with ResNet data preprocessing and an input image size of
224⇥224 pixels. When training models for 360 epochs, we
applied a dropout rate of 0.15 before the final fully con-
nected layer for models from MobileNetV2 search spaces

8TensorFlow’s default variable initialization heuristics, such as
tf.initializers.he normal are designed for ordinary convolu-
tions, and can overestimate the fan-in of depthwise convolutional kernels
by multiple orders of magnitude; we corrected this issue in our version.

and 0.25 for models from MobileNetV3 search spaces. We
did not apply dropout when training models for 90 epochs.

As is standard for ImageNet experiments, our test set ac-
curacies were obtained on what is confusingly called the
ImageNet validation set for historical reasons. What we re-
fer to as validation set accuracies were obtained on a held-
out subset of the ImageNet training set containing 50,046
randomly selected examples.

E.2. Architecture Search for Classification
Architecture search experiments are performed using

Cloud TPU v2-32 or Cloud TPU v3-32 instances with 32
TPU cores and a per-core batch size of 128.

For training the shared model weights, we use the same
hyper-parameters as for stand-alone model training, except
that the dropout rate of the final fully connected layer is
always set to 0. When applying L2 regularization to the
traininable model variables, we only regularize parameters
which are used in the current training step. Because batch
norm statistics can potentially vary significantly from one
candidate architecture to the next, batch norm is always ap-
plied in “training” mode, even during model evaluation.

For training the RL controller, we use an Adam opti-
mizer with a base learning rate of 3e-4, �1 = 0, �2 = 0.999,
and ✏ =1e-8. We set the learning rate of the RL controller
to 0 for the first 25% of training. If using an exponential
schedule, we set the learning rate equal to the base value
25% of the way through training, and increase it exponen-
tially so that the final learning rate is 10x the base learning
rate. If using a constant schedule, we set the learning rate
equal to the base learning rate after the first 25% of training.

E.3. Object Detection
Our implementation is based on the Tensorflow Object

Detection API [16]. All backbones are combined with SS-
DLite [33] as the head. Following MobileNetV2 [33] and
V3 [13], we use the last feature extractor layers that have an
output stride of 16 (C4) and 32 (C5) as the endpoints for the
head. In contrast with MobileNetV3 + SSDLite [13], we
do not manually halve the number of channels for blocks
between C4 and C5, since in our case the number of chan-
nels is automatically learned by the search algorithm. All
experiments use 320⇥320 input images.

For standalone training, each detection model is trained
for 50K steps from scratch on COCO train2017 data us-
ing a Cloud TPU v2-32 or TPU v3-32 instance (32 TPU
cores) with a per-core batch size of 32. We use SGD to op-
timize the shared model weights with a momentum of 0.9.
The (global) learning rate is warmed up linearly from 0 to 4
during the first 5K steps and then decayed to 0 following a
cosine schedule [25] during the rest of the training process.

For architecture searches, training configurations for the
model weights remain the same as for standalone training.



We split out 10% of the data from COCO train2017 to com-
pute the reward during an architecture search. The train-
ing setup of the RL controller is the same as for classifi-
cation, except that the base learning rate of the Adam op-
timizer is set to 5e-3. Whereas classification models are
evaluated based on accuracy, detection models are evalu-
ated using mAP (mean Average Precision). To obtain re-
sults in Table 7, architecture searches were carried out in the
MobileNetV3-Like search space with a target inference cost
of 106ms to match the simulated latency of MobileNetV3 +
SSDLite.

To obtain the test-dev results, each model is trained over
the combined COCO train2017 and val2017 data for 100K
steps. Other settings remain the same as those for stan-
dalone training and validation.

E.4. Simulated Inference Times

In early experiments, we found that if we benchmarked
the same model on two different phones, the observed la-
tencies could differ by several milliseconds. To ensure that
our results were reproducible – and to mitigate the possibil-
ity of random hardware-specific variance across runs – we
estimated the latencies of our models using lookup tables
similar to those proposed by NetAdapt [42]. These lookup
tables let us estimate the latency of each individual opera-
tion (e.g., convolution or pooling layer) in the network. The
overall latency of a network architecture was estimated by
summing up the latencies of all its individual operations.

We validated our use of simulated latencies by sam-
pling 100 random architectures and comparing the simu-
lated numbers against on-device numbers measured on a
real Pixel-1 phone. Figure 4 shows that the two are well-
correlated.

F. Cost of Random Search vs Efficient NAS

Training a single architecture for 90 epochs on ImageNet
requires about 1.7 hours using a Cloud TPU v3-32 instance
(32 cores), whereas a single architecture search run takes
between 8 and 13 hours, depending on the search space.
This means that for the cost of a single 90-epoch search, we
can evaluate 4-8 random models. In some cases, we found
that the cost of an efficient architecture search could be fur-
ther improved by increasing the number of search epochs
from 90 to 360. For the cost of a single 360-epoch search,
we can evaluate 15 - 30 random models. We provide a gen-
erous budget of 20 - 50 models for our random search ex-
periments in order to demonstrate that efficient architecture
search can outperform random search even if each random
search experiment is more compute-intensive.

Figure 4: On-device vs. simulated latencies in the ProxylessNAS-
Enlarged and MobileNetV3-Like search spaces. Each plot is based
on 100 random architectures in the given space.

Agg. Sharing Valid Acc (%) Test Acc (%) Latency

No 76.4 ± 0.1 75.0 ± 0.1 84.1 ± 0.4
Yes 76.3 ± 0.2 75.0 ± 0.1 84.0 ± 0.4

Table 12: Effect of aggressive weight sharing (abbreviated as “Agg
Sharing” in the table above) on the quality of searched architec-
tures. Each search is run for 90 epochs on the ProxylessNAS
search space with op and filter warmup enabled.

G. Quality of Aggressive Weight Sharing
To verify the quality impact of aggressive weight shar-

ing, we ran architecture searches on the original Proxyless-
NAS search space both with and without aggressive sharing.
The results (Table 12) indicate that aggressive weight shar-
ing does not significantly affect searched model accuracies
in this space. Our other two search spaces (ProxylessNAS-
Enlarged and MobilenetV3-Like) were too large us to run
searches without aggressive weight sharing.


