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Figure 1. Illustration of control points of X (left) that are matched
to convex polyhedra of Y (right). Colours indicate correspon-
dences between control points and convex polyhedra.

A. Obtaining Convex Polyhedra on Y
Given the j-th control point of YJ , we obtain its as-

sociated convex polyhedron using a neighhourhood prop-
agation strategy. To this end, we define a planarity crite-
rion using the maximum of the mean absolute deviation
(MAD) of the surface normals at the points in Zj . For a
given matrix N ∈ Rn×3 and its column mean N ∈ R1×3,
the MAD is defined as mad(N) := 1

n

∑
i |Ni − N |. As

such, starting with t=0, we consider the vertices of the t-
ring of the j-th vertex as Zj , where we increase t as long
as max(mad(N t

j )) ≤ η. Here, N t
j denotes the matrix of

the normals of the t-ring of the j-th vertex and η speci-
fies a user-defined threshold. Once we have determined the
largest t such that the t-ring neighborhood is sufficiently
planar (below the threshold η), we discard all points in the
rows of Zj that are interior vertices of the convex polygon
defined by Zj (as they are redundant). In Fig. 1 (right) we
show so-obtained convex polyhedra.

B. Piece-wise Linear Approximation of SO(3)
Constraints

The constraint R∈SO(3) can be expressed as the
orthogonality constraint RTR=I3 in combination with
R1×R2=R3. Hence, the constraint R∈ SO(3) comprises
exactly 6 quadratic equality constraints, which form a non-
convex set. In order to define a piece-wise linear approx-

imation we use specially-ordered set of type 2 (sos2) vari-
ables. An sos2 variable is a non-negative vector where at
most two consecutive element can be non-zero. With that,
such a variable allows to encode a non-convex quadratic
function in terms of a piece-wise linear one, so that in the
end all quadratic constraints become linear, and the sos2
constraints are imposed based on (few) binary variables.

For illustrative purposes, we will now provide a sim-
ple example for a piece-wise linear approximation of a
quadratic function. Let us consider the function h(x) = x2

on the interval [−1, 1]. First, we split the domain into b bins,
so that we evaluate x2 at these b discrete positions, and then
compute all values that fall in-between the sampled points
as linear approximation between its two neighbour sam-
ple points. Let b = 4, and let φ = [−1,−0.5, 0, 0.5, 1]T
be a vector that contains the discretised domain, so that
φ2 = [1, 0.25, 0, 0.25, 1]T defines the elementwise square
of φ. Moreover, let λ ∈ Rb+1 be a non-negative sos2 vari-
able that sums to one (as mentioned, sos2 means that only
two consecutive elements can be non-zero). Then, we can
approximate

h(x) ≈ λTφ2 for x = λTφ . (1)

For example, for x = 0.75, we obtain the sos2 variable
λ = [0, 0, 0, 0.5, 0.5]T (since x = 0.75 = λTφ). With that,
we obtain h(0.75) = 0.5625 ≈ 0.625 = λTφ2. The impor-
tant property is that (1) allows to approximate the quadratic
function h(·) based on a representation that is linear in the
variables x and λ. In addition to [4] and [9], we refer the
interested reader to [2, Ch. 9.1.11]1, where sos2 constraints
as well as the idea of using a logarithmic Gray encoding are
explained.

C. Search Space Reduction
In addition to using a logarithmic encoding of the SO(3)

discretisation variables, we also impose further constraints

1also available online at
https://docs.mosek.com/modeling-cookbook/mio.
html#continuous-piecewise-linear-functions

https://docs.mosek.com/modeling-cookbook/mio.html#continuous-piecewise-linear-functions
https://docs.mosek.com/modeling-cookbook/mio.html#continuous-piecewise-linear-functions
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Figure 2. Shape X (left) is matched to Y , where a search space
reduction using ADG [6] leads to wrong matchings (middle),
whereas ours produces correct correspondences (right).

upon the matching matrix P , so that the size of the overall
search space can be reduced. A similar idea has also been
pursued in [6], where a scalar criterion based on the average
geodesic distance (ADG) was used. In contrast, rather than
using a single scalar value for each vertex, we propose to
leverage a more powerful approach that considers more de-
scriptive statistics of geodesic distances, see Fig. 2. To this
end, for each control point we compute nprctile evenly spaced
percentiles from 0 to 100% of the geodesic distance from
this control point to all other points. Let γX ∈ Ru×nprctile

and γY ∈ Rv×nprctile denote the so-obtained percentile ma-
trices, where the columns are the ordered percentiles from
0 to 100%. As such, the matrices γX and γY can be seen
as features of the respective shapes extracted at the control
points. Whenever two control points i ∈ [u], j ∈ [v] cor-
respond to each other, the features γXi and γYj should be
similar, so that dij :=‖γXi −γYj ‖ is small. Based on this ob-
servation, we use the feature distances [dij ]i,j and sequen-
tially solve nLAP linear assignment problems (LAP) [7] to
match features. The idea of solving a sequence of LAPs
is to not only find the single best matching P1 of features,
but rather finding multiple solutions P1, . . . , PnLAP , so that
the nonzero elements in Pall =

∑nLAP
`=0 P` define the allowed

matchings in P . Here, the matrix P` is obtained by per-
forming a feature matching using [dij ]i,j when forbidding
all previous matchings P1, . . . , P`−1. As such, when op-
timising MINA, we constrain all elements of P to be zero
for those elements where Pall is zero. Using this procedure
is advantageous over simple thresholding of [dij ]i,j , since
on the one hand feasibility is guaranteed, and on the other
hand the number of allowed matchings is equal for all con-
trol points.

D. Further Implementation Details

We have implemented MINA in the optimisation mod-
elling toolbox Yalmip [5], which uses the conic mixed-
integer branch and bound solver MOSEK [1] as backend
(with default parameters). In all experiments we used
λc=4, λr=1 and λs=0.5, where we account for different
problem sizes by multiplying each λ• with 1√

#
, where #

denotes the total number of elements that the norm is ap-
plied to. We set the weights ωe for the smoothness term

to ωe=
de∑

e∈E de
, where for e = (p, q) by de we denote the

length of the common edge of triangles p, q. With that, we
achieve that the deformation of two adjacent triangles p, q is
more flexible when their common edge is small. We set the
planarity threshold to η= 1

2 . For keeping the number of vari-
ables small, for each convex polyhedron Zj we only keep
the respective control point as well as four additional points
obtained via farthest point sampling (FPS) using geodesic
distances as metric. Note that this results in convex poly-
hedra that are either a single point (if none of the t-rings
of the j-th control point satisfies the planarity criterion), or
Zj is a 5×3 matrix. Since the non-rigid deformation in-
duced by a sparse set of matched control points is relatively
coarse, rather than modelling τ with the original mesh res-
olution we use downsampled meshes with about 300 faces,
similarly as in [8]. We set nLAP=5, nprctile=min(nX , nY),
M=0.2 and use b=4 bins for the SO(3) discretisation.

Next, we provide additional details on shape to point
cloud matching and the relation between partial shape
matching and outlier rejection.

Shape to point cloud matching. The main difference
when Y is represented as a point cloud rather than a mesh
is that we need to use a different approach for computing
geodesic distances and normals (required for sampling con-
trol points, for the definition of the convex polyhedra as de-
scribed in Sec. A, and for the search space reduction de-
scribed in Sec. C). In our case we compute geodesic dis-
tances and normals based on a nearest neighbour graph,
where we use the 3 nearest neighbours. After this informa-
tion is obtained, the overall optimisation problem is equiva-
lent to the one when Y is a mesh, since the only information
of Y that is explicitly used in our optimisation problem for-
mulation are the convex polyhedra.

Relation between partial shape matching and outlier
rejection. In our considered partial shape matching set-
ting we match all control points of the partial shape X to
the full shape Y . This is in contrast to our outlier rejec-
tion setting, where we allow that some control points of X
are not matched to Y . However, although for partial shape
matching we do not use outlier rejection, we mention that
principally it could be used for matching a full shape to a
partial one.



E. Additional TOSCA Results
In Fig. 3 we report runtime statistics over all 71 shape

matching instances from the TOSCA datasets for all con-
sidered methods. On this dataset, the median processing
time of our method is ≈15min, whereas the other methods
require less than one minute.

Rodola et al. CPD PM-SDP Chen & Koltun MINA

10
-3

10
-2

10
-1

10
0

10
1

ru
n
ti
m

e
 [
m

in
]

Figure 3. Runtime statistics for the TOSCA dataset. Note that the
vertical axis is shown in log-scale.

In Fig. 4 we present further results where also the de-
formed shape τ(X ) is shown.
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Figure 4. Correspondences obtained from our method for several shape matching instances from the TOSCA dataset [3]. Correspondences
are indicated by dots with corresponding colours. In each triplet of rows we show X , Y , and the deformed shape τ(X ) from top to bottom.
Note that the deformation τ is not always able to obtain a good alignment (particularly for severe non-rigid transformations, e.g. the cat or
the gorilla), but the correspondences are still reasonable in many cases.


