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1. Implementation Details

Training. We use a similar training setup as in [2]. The loss
weights for each of the three cascade stages are setto 1, 0.5,
and 0.25 respectively. The loss weight for the semantic seg-
mentation branch is set to 0.1. We train our model on pairs
of frames, where the second frame in a pair is randomly se-
lected with a time gap § € [—25, 25] relative to first frame.
We use a multi-scale training approach implemented by re-
sizing the shorter side of the frame randomly between 400
and 800 pixels. Our model is trained in a distributed set-
ting using 64 GPUs, each GPU holding a single clip. The
training is done for 20 epochs with an initial learning rate
of 0.008, which is decreased by 10 at 16 and 19 epochs.
We initialize our model with a Mask R-CNN pretrained on
COCO for the instance segmentation. The hyperparameters
of RPN and FPN are the same as in [2].

Inference. During testing, we run the bounding box predic-
tion branch on 1000 proposals, apply non-maximum sup-
pression, and use boxes with a score higher than 0.1 as in-
put to the mask prediction and mask propagation branches.
During inference, our MaskProp is applied to video clips
consisting of 13 frames.

2. Additional Ablation Experiments

Importance of Frame-Level Instance Masks. As de-
scribed in our main draft, we use frame-level instance masks
for instance-specific feature computation. To investigate the
contribution of these masks to the performance of our sys-
tem, we experiment with masks obtained from two different
Mask R-CNN models. These include Mask R-CNN with 1)
ResNeXt-101-64x4d [4] and 2) Spatiotemporal Sampling
Network (STSN) [1] ResNeXt-101-64x4d [4] backbones.
In Table 1, we present our results for this ablation. Our
results indicate that frame-level instance masks obtained
from stronger models allow us to achieve better video in-
stance segmentation performance. Thus, we expect that fu-
ture improvements in image instance segmentation will fur-

Mask R-CNN Model mAP AP@75
ResNeXt-101-64x4d [4] 443 48.3
STSN [1]-ResNeXt-101-64x4d [4] 46.6 51.2

Table 1: We study the effect of frame-level instance masks
to our system’s performance. We evaluate our method’s
accuracy when using instance masks obtained from Mask
R-CNN with two different backbones. Our results indi-
cate that frame-level instance masks obtained from stronger
models lead to better video instance segmentation results.

ther benefit our method.

3. Additional Qualitative Results

Comparison with MaskTrack R-CNN. In Figure 1, we
compare our instance tracks (last row of predictions for each
clip) with the MaskTrack R-CNN predictions (first row of
predictions). We use different colors to depict different ob-
ject instances. On these examples, MaskProp yields more
robust and temporally coherent instance tracks than Mask-
Track R-CNN. We observed that the differences in perfor-
mance are especially noticeable when the video contains
large object motion, occlusions, or overlapping objects.

Visualizing Propagated Instance Features. In Figure 2
we visualize instance-specific features propagated from
frame ¢ to other frames in the given video clip for two dif-
ferent object instances detected in frame ¢. Here we show
activations from a randomly selected feature channel. Our
results indicate that MaskProp reliably propagates features
that are specific to each instance despite motion blur, object
deformations and large variations in object appearance.

4. Supplementary Video

Due to space constraints, we could not include extensive
qualitative results in the original draft. Furthermore, it is
hard to judge robustness to occlusion and other nuisance
effects from static figures. For these reasons, we enclose
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Figure 1: We compare our video instance segmentation results with those produced by MaskTrack R-CNN [5]. Different
object instances are shown with different colors. The first row for each video shows the original frames. The second row
illustrates the mask predictions of MaskTrack R-CNN and the third row those obtained with our MaskProp. Compared to
MaskTrack R-CNN, on these sequences our MaskProp tracks object instances more robustly even when they are occluded or

overlap with each other.

in supplementary video' the complete video instance seg-
mentations produced by our MaskProp for several challeng-
ing input sequences involving occlusion, object instances
with similar appearance, and small objects. For compari-
son we also include the results obtained with MaskTrack
R-CNN [5]. Our video results suggest that MaskProp pro-
duces more robust instance tracks than MaskTrack R-CNN

'h:tps://qberta.qithab.io/maskprop/

on these examples, particularly in scenarios involving mo-
tion blur, occlusions, or multiple nearby objects.
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Figure 2: An illustration of instance-specific features propagated from frame ¢ to other frames in the given video clip. Here,
we visualize propagated activations from one randomly selected feature channel. The activations in the two rows correspond
to two different object instances detected at time ¢. Our visualizations suggest that MaskProp reliably propagates features
that are specific to each instance even when instances appear next to each other, and despite the changes in shape, pose and
the nuisance effects of deformation and occlusion.
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