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A. Outputting conditional probabilities with
HXE

We investigated whether outputting conditional proba-
bilities instead of class probabilities affects the performance
of the classifier represented by our proposed HXE approach
(Sec. 3.1). These two options correspond, respectively, to
implementing hierarchical information as an architectural
change or as modification of the loss only:

• When the model outputs the conditional probabilities
p(C(l)|C(l+1)) directly, the output dimension is equal
to the total number of nodes in the hierarchy and nor-
malisation is ensured hierarchically with a different
softmax at each independent level of the hierarchy.
Eqn. 4 can be used directly on the output of the model.

• When the model outputs the class probabilities, the
output dimension is equal to the number of leaf nodes
in the hierarchy and normalisation can be performed
with a single softmax. In this case, however, it is
necessary to use Eqn. 3 in order to obtain the condi-
tional probablilities in terms of the final probabilities
in Eqn. 4.

The second method, which we advocate here, has the advan-
tage that hierarchichal information is implemented in the
loss only, meaning that it does not require direct knowledge
of the hierarchy for inference.

Comparing different values of α for otherwise identi-
cal training parameters, we also observe that outputting the
class probabilities consistently results in an improvement of
performance across all the metrics, see Suppl. Fig. 2.

B. Note on methods based on hierarchical ar-
chitectures

We opted not to evaluate against the “generalist/expert”
hierarchical models surveyed in Sec. 2.3 for several reasons.
For one, none of the listed methods perform experiments

*Equal contribution.

under hierarchical measures. As noted in the main text, they
all rely on discovered hierarchies, ruling out direct compar-
ison to methods accepting the hierarchies considered here.
Crucially, these methods increase the capacity of their base
models, which not only rules out controlled experimental
comparison, but confounds the intuition behind why their
designs demonstrate improved performance: the extent to
which the hierarchical design per se is responsible for the
gains in top-k accuracy observed is actually an open ques-
tion. We also note that a recurring theme in these works
is the observation that in practice, the use of generalists
which make hard categorisations into disjoint coarse cate-
gories causes enough irrecoverable errors to motivate mov-
ing away from this design strategy. Mitigating approaches
typically involve the use of non-disjoint coarse categories
and probabilistic one-to-many coarse classification. Thus,
while these methods are worthy of mention and further in-
vestigation, they do not yet represent attempts at the prob-
lem we examine in this paper.

C. More implementation details

In order to perform meaningful comparisons, we adopted
a simple configuration (network architecture, optimiser,
data augmentation, . . . ) and used it for all the methods pre-
sented in this paper.

We used a ResNet-18 architecture (with weights pre-
trained on ImageNet) trained with Adam [12] for 200,000
steps and mini-batch size of 256. We used a learning rate of
1e−5 unless specified otherwise. To reduce overfitting, we
adopted PyTorch’s basic data augmentation routines with
default hyperparameters: RandomHorizontalFlip()
and RandomResizedCrop(). For both datasets, images
have been resized to 224×224.

Below, we provide further information about the meth-
ods we compared against, together with the few minor im-
plementation choices we had to make. As mentioned in
Sec. 1, these methods represent, to the best of our knowl-
edge, the only modern attempts to deliberately reduce the
semantic severity of a classifier’s mistakes that are gener-
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Listing 1: Network head used for DeViSE.
model . f c = t o r c h . nn . S e q u e n t i a l (

t o r c h . nn . L i n e a r ( i n f e a t u r e s =512 ,
o u t f e a t u r e s =512) ,

t o r c h . nn . ReLU ( ) ,
t o r c h . nn . BatchNorm1d ( 5 1 2 ) ,
t o r c h . nn . L i n e a r ( i n f e a t u r e s =512 ,

o u t f e a t u r e s =300)
)

ally applicable to any modern architecture.

YOLO-v2. In motivating the hierarchical variant of the
YOLO-v2 framework, Redmon & Farhadi [13, Sec. 4],
mention the need of integrating the smaller COCO detection
dataset [7] with the larger ImageNet classification dataset
under a unified class hierarchy. Their approach too relies
on a heuristic for converting the WordNet graph into a tree,
and then effectively training a conditional classifier at every
parent node in the tree by using one softmax layer per sib-
ling group and training under the usual softmax loss over
leaf posteriors. The authors report only a marginal drop in
standard classification accuracy when enforcing this tree-
structured prediction, including the additional internal-node
concepts. They note that the approach brings benefits, in-
cluding graceful degradation on new or unknown object cat-
egories, as the network is still capable of high confidence in
a parent class when unsure as to which of its children is
correct.

Since the model outputs conditional probabilities instead
of class probabilities, we changed the output dimension of
the terminal fully-connected layer, such that it outputs logits
for every node in the hierarchy. Proper normalisation of the
conditional probabilities is then enforced at every node of
the hierarchy using the softmax function. Finally, the loss is
computed by summing the individual cross-entropies of the
conditional probabilities on the path connecting the ground-
truth label to the root of the tree.

DeViSE. Frome et al. [4] proposed DeViSE with the aim of
both making more semantically reasonable errors and en-
abling zero-shot prediction. The approach involves modify-
ing a standard deep classification network to instead output
vectors representing semantic embeddings of the class la-
bels. The label embeddings are learned through analysis of
unannotated text [9] in a separate step, with the classifica-
tion network modified by replacing the softmax layer with
a learned linear mapping to that embedding space. The loss
function is a form of ranking loss which penalises the ex-
tent of greater cosine similarity to negative examples than
positive ones. Inference comprises finding the nearest class
embedding vectors to the output vector, again under cosine
similarity.

Since an official implementation of DeViSE is not avail-

able to the public, we re-implemented it following the de-
tails discussed in the paper [4]. Below the list of changes
we found appropriate to make.

• For the generation of the word embeddings, instead of
the rather dated method of Mikolov et al. [9], we used
the high-performing and publicly available1 fastText
library [3] to obtain word embeddings of length 300
(the maximum made available by the library).

• Instead of a single fully-connected layer mapping the
network output to the word embeddings, we used the
network “head” described in Listing 1. We empiri-
cally verified that this configuration with two fully-
connected layers outperforms the one with a single
fully-connected layer. Moreover, in this way the num-
ber of parameters of DeViSE roughly matches the
one of the other experiments, which have architec-
tures with a single fully-connected layer but a higher
number of outputs (608, equivalent to the number of
classes of tieredImageNet-H, as opposed to 300, the
word-embedding size).

• Following what described in [4], we performed train-
ing in two steps. First, we trained only the fully-
connected layers for the first 150,000 steps with a
learning rate of 1e−4. We then trained the entire net-
work for 150,000 exta epochs, using a learning rate of
1e−6 for the weights of the backbone. Note that [4]
did not specify neither how long the two steps of train-
ing should last nor the values of the respective learn-
ing rates. To decide the above values, we performed a
small hyperparameter search.

• [4] says that DeViSE is trained starting from an
ImageNet-pretrained architecture. Since we evalu-
ated all methods on tieredImageNet-H, we instead ini-
tialised DeViSE weights with the ones of an architec-
ture fully trained with the cross-entropy loss on this
dataset. We verified that this obtains better results than
starting training from ImageNet weights.

Barz&Denzler [2]. This approach involves first mapping
class labels into a space in which dot products represent se-
mantic similarity (based on normalised LCA height), then
training a deep network to learn matching feature vectors
(before the fully connected layer) on its inputs. There is a
very close relationship to DeViSE [4], with the main differ-
ence being that here, the label embedding is derived from a
supplied class hierarchy in a straightfoward manner instead
of via text analysis: iterative arrangement of embedding
vectors such that all dot products equal respective seman-
tic similarities. The authors experiment with two different
loss functions: (1) a linear reward for the dot product be-
tween the output feature vector and ground-truth class em-
bedding (i.e. a penalty on misalignment); and (2) the sum

1https://github.com/facebookresearch/fastText
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of the preceding and a weighted term of the usual cross-
entropy loss on the output of an additional fully connected
layer with softmax. We only used (2), since in [2] it attains
significantly better results than (1).

We used the code released by the authors 2 to produce the
label embeddings. To ensure consistency with the other ex-
periments, two differences in implementation with respect
to the original paper were required.

• We simply used a ResNet-18 instead of the archi-
tectures Barz & Denzler experimented with in their
paper [2] (i.e. ResNet-110w [6], PyramidNet-272-
200 [5] and Plain-11 [1]).

• Instead of SGD with warm restarts [8], we used
Adam [12] with a learning rate of 1e−4 (the value per-
forming best on the validation set).

D. Pruning the WordNet hierarchy

The ImageNet dataset [14] was generated by populating
the WordNet [10] hierarchy of nouns with images. WordNet
is structured as a graph composed of a set of IS-A parent-
child relationships. Similarly to the work of Morin & Ben-
gio [11] and Redmon & Farhadi [13], our proposed hierar-
chical cross entropy loss (HXE, Sec. 3.1) also relies on the
assumption that the hierarchy underpinning the data takes
the form of a tree. Therefore, we modified the hierarchy to
obtain a tree from the WordNet graph.

First, for each class, we found the longest path from the
corresponding node to the root. This amounts to selecting
the paths with the highest discriminative power with respect
to the image classes. When multiple such paths existed, we
selected the one with the minimum number of new nodes
and added it to the new hierarchy. Second, we removed
the few non-leaf nodes with a single child, as they do not
possess any discriminative power.

Finally, we observed that the pruned hierarchy’s root is
not PHYSICAL ENTITY, as one would expect, but rather
the more general ENTITY. This is problematic, since EN-
TITY contains both physical objects and abstract concepts,
while tieredImageNet-H classes only represent physical ob-
jects. Upon inspection, we found that this was caused by
the classes BUBBLE, TRAFFIC SIGN, and TRAFFIC LIGHTS
being connected to SPHERE and SIGN, which are considered
abstract concepts in the WordNet hierarchy. Instead, we
connected them to SPHERE, ARTIFACT and SIGNBOARD,
respectively, thus connecting them to PHYSICAL ENTITY.

Even though our second proposed method (soft labels),
as well as the cross-entropy baseline, DeViSE [4] and Barz
& Denzler [2], do not make any assumption regarding the
structure of the hierarchy, we ran them using this obtained
pruned hierarchy for consistency of the experimental setup.

2https://github.com/cvjena/semantic-embeddings
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E. Supplementary figures
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Supplementary Figure 1: Distribution of mistake severity when picking random example pairs in ImageNet/ILSVRC-12.
Note that though this distribution shares some qualitative similarities with the ones shown in Fig. 1, it is nonetheless sub-
stantially different. This demonstrates that the shapes of the mistake-severity distributions for the various DNN architectures
studied cannot be explained by properties of the dataset alone.

Supplementary Figure 2: Outputting the conditional probabilities (architectural change) results in a degradation of perfor-
mance compared to outputting the class probabilities directly (loss change) when using the hierarchical cross-entropy loss
with exponential weights λ(C) = exp(−αh(C)). Results are shown both on tieredImageNet-H (top) and iNaturalist19-H
(bottom). Points closer to the bottom-left corner of the plots are the ones achieving the best tradeoff.


