
Supplementary material
A sparse resultant based method for efficient minimal solvers

Snehal Bhayani1 Zuzana Kukelova2 Janne Heikkilä 1
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1. Existing sparse resultant based algorithms
In this section we consider the existing sparse resultant
based algorithms [4, 6], where the authors consider a system
of n polynomials,

{f1(x1, ..., xn) = 0, ..., fn(x1, ..., xn) = 0}, (1)

in n unknowns, X = {x1, ..., xn} for computing a sparse
resultant matrix. While Heikkilä [6] propose a method to
hide one variable, Emiris [4] propose two methods, one
where they hide a variable, and another where they add an
extra polynomial of the form u0 + u1x1 + · · ·+ unxn, for
generating a polynomial solver. In each of these methods
the underlying assumption is that there are as many polyno-
mials as there are unknowns. Hence, using their proposed
algorithms we could not generate solvers for those minimal
problems with more polynomials than unknowns. Addition-
ally, the algorithm by [6] suffers from other drawbacks as
well:

1. Heikkilä [6] propose an method of hiding one variable,
say xn, and computing a monomial basisB to linearize
the input polynomial equations to have

M(xn)b = 0, (2)

where b = vec(B) based on some monomial order.
However such a monomial basis can lead to a coef-
ficient matrix M(xn) that is rank deficient and hence
leads to unstable or incorrect solvers.

2. If in case M(xn) is not rank deficient Heikkilä [6] trans-
form (2) into a generalized eigenvalue problem(GEP)
of the form

Ay = xnBy. (3)

as described in (4) of Section 2.2 of our main paper.
But such a conversion leads to large and sparse A and
B that introduces parasitic eigenvalues which are either
0 or ∞. It can also lead to spurious eigenvalues that
correspond to incorrect solutions.

1.1. Proposed extension to Heikkilä’s algorithm

Considering the shortcomings of the method by Heikkilä [6]
we attempted to extend and improve their algorithm,

1. Due to an iterative nature of the algorithm, it is easy
to relax the requirement of having the same number of
equations and unknowns, and hence we assume that
there are m ≥ n polynomial equations with n un-
knowns. Then we perform an exhaustive search across
all polynomial combinations and variables by hiding
each variable xi ∈ X at a time. This usually reduces
the size of the monomial basis leading to a smaller ma-
trix M(xn) than the one generated by Heikkilä’s algo-
rithm [6].

2. The problem of rank deficiency is resolved by test-
ing for rank of the matrix M(xn) for every prospec-
tive monomial basis B so chosen in the algorithm.
This guarantees that the eigenvalues and eigenvectors
of GEP formulation provides correct solutions to the
original polynomial system (1).

3. Additionally, we know that a GEP formulation for
many minimal problems in computer vision has par-
asitic zero(or ∞) eigenvalues due to zero columns in
A(or B) in (3). Hence we extended the the algorithm
by Heikkilä [6] to eliminate a set of rows-columns in
order to reduce the size of GEP we are trying to solve.

The sizes of solvers generated using these extensions to
the algorithm by Heikkilä [6] for some interesting minimal
problems are listed in Table 1(Column 1). If in these solvers
A or B in GEP (3) is an invertible matrix, GEP can be exe-
cuted as a sequence of a matrix inverse and an eigendecom-
position of the resulting matrix. For example, a GEP of size
18 × 18 means an inverse of 18 × 18 matrix and an eigen-
value decomposition of 18 × 18 matrix. We note that this
assumption holds true for all of the minimal problems in
Table 1. In such a case the most computationally expensive
step is the eigenvalue decomposition, since the matrix that is
inverted is usually sparse. Now, it can be seen that for most
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Problem Extension to [6] Our u-resultant

GEP Inv Eig. Inv Eig.

Rel. pose F+λ 8pt(8 sols.) 12× 12 11× 11 9× 9 15× 15 9× 9
Stitching fλ+R+fλ 3pt (18 sols.) 24× 24 18× 18 18× 18 31× 31 18× 18
Rel. pose E+λ 6pt (26 sols.) 30× 30 14× 14 26× 26 44× 44 26× 26
Abs. pose quivers (20 sols.) 43× 43 68× 68 24× 24 - -
Rel. pose f+E+f 6pt (15 sols.) 18× 18 12× 12 18× 18 - -
Rel. pose λ1+F+λ2 9pt (24 sols.) 68× 68 90× 90 27× 27 - -
Rel. pose E+fλ 7pt (19 sols.) 36× 36 61× 61 19× 19 105× 105 19× 19
Rel. pose λ+E+λ 6pt (52 sols.) 110× 110 39× 39 56× 56 - -
Triangulation from satellite im.(27 sols.) 52× 52 88× 88 27× 27 93× 93 27× 27
Unsynch. Rel. pose (16 sols.) 128× 128 150× 150 18× 18 - -
Rolling shutter pose (8 sols.) 18× 18 47× 47 8× 8 48× 48 8× 8

Table 1. A comparison of the sizes of important computation steps performed by solvers generated using our new method with that of the
solvers generated based on our attempted extensions of the algorithm by Heikkilä [6] as well as the solvers generated using an u-resultant
based method. Missing entry is for the case where we failed to generate a solver.

of the minimal problems our proposed solvers are solving
substantially smaller eigenvalue problems than the solvers
based on the extended version of [6]. And even though for
few minimal problems the matrices to invert in our proposed
solvers are slightly larger than the inverses in solvers based
on [6], these matrices are usually quite sparse and the size
difference is not as dominating as the difference in size of
eigenvalue problem. Additionally, a GEP would lead to par-
asitic eigenvalues corresponding to incorrect solutions and
extra computation has to be carried out in order to elimi-
nate such eigenvalues, thus slowing down such solvers even
further as compared to the ones based on our method. Ad-
ditionally the number of eigenvalues to be computed for a
GEP still is quite large as compared to the eigenvalues to
be computed by our proposed solver. Hence based on these
considerations, we can conclude that our proposed solvers
for all of the problems in Table 1 would be faster than the
ones generated using our proposed extensions to [6].

1.2. Comparison with Emiris’s u-resultant method

Now we consider the u-resultant based method [4] where
the authors add a polynomial of a general form u0 +x1u1 +
· · · + xnun with random coefficients, to the original equa-
tion (4). However we note that in general the method
presented in [4] does not work for a system with more
polynomial equations than unknowns. Moreover, there is
no publicly available code for the method [4]. Therefore,
for a fair comparison with our method that based upon
adding a polynomial of a special form, we modified our
resultant-based method to simulate the one from [4]. For
this, we augmented (4) with a polynomial of the form
u0 + x1u1 + · · ·+ xnun by selecting u1, . . . , un randomly
from Z (for more details on u-resultant we refer to [4, 3]).
The column 3 in Table 1 lists the sizes of solvers generated
in this manner and is compared with the sizes of solvers

generated based on our proposed method. We can observe
that for many minimal problems the size of matrix to be
inverted based on general u-resultant method is larger than
that of the matrix to be inverted in our proposed solver. This
indicates that our proposed solver would be faster than the
solvers based on general u-resultant method for such min-
imal problems. Beyond this, for several minimal problems
(5 problems from Table 1), we either failed to generate a
working solver by using the above mentioned general u-
polynomial at all or within a reasonable amount time by
testing polynomial combinations of a reasonable size. We
refer to Algorithm 1 here and Section 3.2 of our main pa-
per for more details about the iterative nature adopted for
testing polynomial combinations of various sizes.

Additionally we also considered the problem from com-
putational biology explored in [4]. We compare the size
of the u-resultant based solver for this problem reported
in [4], with the size of a solver generated using our proposed
method. This problem consists of 3 polynomial equations
in 3 variables with 15 generic coefficients. For more details
of the algebraic problem formulation, we refer to Section
7 in [4]. Now, the mixed volume of the input polynomial
system is 16 which denotes the actual number of solutions
to this polynomial system. The solver considered in [4] is
generated using the u-resultant method by adding an extra
polynomial of the form, f0 = u+31x1−41x2 +61x3. The
solver consists of an inverse of matrix of size 56×56 and an
eigenvalue decomposition of 30×30 matrix. We generated a
solver for the same algebraic formulation with our proposed
algorithm. Our new solver includes a matrix inversion of
smaller matix of size 48× 48 as well as smaller eigenvalue
problem of size 16 × 16. This shows that the solver gener-
ated using our proposed algorithm would be faster than the
one considered in [4].



2. Algorithms
Now we consider the main contribution of our main paper
for which we described a three step procedure that leads
to an eigenvalue formulation(Equations (14) or (16) in our
main paper) to be solved for extracting roots to (4). So here
we provide algorithms for each of these three steps. For
the sake of this section, we assume details and notations
of Section 3 of our main paper. We also consider a set of
monomial multiples T to be of form {T1, . . . , Tm} where
each Ti represents the set of monomial multiples for poly-
nomial fi(x1, . . . , xn). Additionally, we shall assume that
wherever required a coefficient matrix M is computed from
a basis B along with a corresponding set of monomial mul-
tiples T , following the lines of Section 3. With these de-
tails in mind, we now outline Algorithm 1 for computing a
monomial B basis from a set of m polynomial equations,

{f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0} (4)

in n variables. The output of the algorithm also contains
a set of monomial multiples, T as well as the coefficient
matrix computed from B and T . For details about the un-
derlying theory, we refer to Section 3.1 in our main paper.
For an alternate eigenvalue formulation(Equation (16) in
our main paper), we need to change Step 14 in Algorithm 1
to B′λ ← {xm ∈ T ′m+1 | xixm ∈ B′}, B′c ← B′ −B′λ.

2.1. Removing columns from M

The next step in our proposed method is to reduce the mono-
mial basisB by removing columns from M along with a cor-
responding set of rows. A brief procedure for this step is
described in Section 3.3 of our main paper, while the Al-
gorithm 2, listed here achieves this. The input is the mono-
mial basisB and the set of monomial multiples T computed
by Algorithm 1 and the output is a reduced monomial ba-
sis Bred and a reduced set of monomial multiples, Tred that
index the columns and rows of the reduced matrix Mred re-
spectively. We note that this algorithm is the same irrespec-
tive of the version of eigenvalue formulation to be consid-
ered(Equations (14) or (15) in our main paper).

Now, it may happen that the reduced matrix Mred still has
more rows than columns. Hence in our main paper, we
have outlined an idea to remove excess rows so as to trans-
form Mred into a square matrix to facilitate a decomposition
of resultant matrix constraint to an eigenvalue formulation
of equation (14)(or the alternate eigenvalue formulation of
equation (16). For more details we refer to Proposition 3.1
in our main paper). Towards this we provide Algorithm 3 to
remove the extra rows from Mred by removing some mono-
mial multiples from Tred. It accepts Bred and Tred as in-
put and returns a set of monomial multiples, Tsq that along
with the basis Bred, leads to square matrix Msq. For an al-
ternate eigenvalue formulation(Equation (16) in our main

Algorithm 1 Extracting favourable monomial basis using
extra equation

Input F = {f1(x), . . . , fm(x)}, x = [x1, . . . , xn]
Output B, T, M

1: B ← φ, T ← φ
2: for i ∈ {1, . . . , n} do
3: F ′ ← {f1, . . . , fm+1}, fm+1 = xi − λ
4: Calculate the support of the input polynomials:

Aj ← supp(fj), j = 1, . . . ,m+ 1
5: Construct newton polytopes:

NPj ← conv(Aj), j = 1, . . . ,m + 1 as well as a
unit simplex NP0 ⊂ Zn.

6: Enumerate combinations of indices of all possible
sizes:
K ← {{k0, . . . , ki} |∀0≤ i ≤ (m+1); k0, . . . , ki ∈
{0, . . . ,m+ 1}; kj < kj+1}

7: Let ∆ ← {{δ1, . . . , δn+1} | δi ∈ {−ε, 0, ε}; i =
1, . . . , (n + 1)} denote the set of possible displace-
ment vectors

8: for I ∈ K do
9: Compute the minkowski sum, Q←

∑
j∈I(NPj)

10: for δ ∈ ∆ do
11: B′ ← Zn ∩ (Q+ δ)
12: T ′j ←{t ∈ Zn | t+Aj ⊂ B′}, j=1 . . .m+ 1
13: T ′ ←{T ′1 . . . T ′m+1}
14: B′λ ←B′ ∩ T ′m+1, B′c ← B′ −B′λ
15: Compute M′ from B′ and T ′

16: if Σm+1
j=1 |T ′j | ≥ |B′| and min

j
|T ′j | > 0 and

rank(M′)= |B′| then
17: A12 ← submatrix of M′ column indexed byB′c

and row indexed by T ′1 ∪ · · · ∪ T ′m
18: if rank(A12) = |B′c| and |B| ≥ |B′| then
19: B ← B′, T ← T ′

20: end if
21: end if
22: end for
23: end for
24: end for
25: Compute M from B and T

paper), we just need to change Step 16 in Algorithm 3 to
B′λ ← {xm ∈ T ′m+1 | xixm ∈ B′}, B′c ← B′ −B′λ.

3. Experiments
In Table 2 we provide a comparison of solvers’ sizes for
some additional interesting minimal problems. We can see
from the table, that for all considered minimal problems our
proposed method generates the smallest solvers (sometimes
of the same size as Gröbner basis solvers generated with
methods from [11, 13]). For an interpretation of the solver
sizes, we refer to Section 4.1 of Evaluation in our main



Algorithm 2 Reducing the monomial basis
Input: B, T
Output: Bred, Tred, Mred

1: B′ ← B, T ′ ← T
2: repeat
3: stopflag← True
4: Compute M′ from B′ and T ′

5: for column c in M′ do
6: Copy M′ to M′′

7: Remove rows r1, . . . , rk containing c from M′′

8: Remove columns c1, . . . , cl of M′′ present in
r1, . . . , rk

9: if M′′ satisfies Proposition 3.1 then
10: Remove monomials from B′ indexing columns

c1, . . . , cl
11: Remove monomials from T ′ indexing rows

r1, . . . , rk
12: stopflag← False
13: break
14: end if
15: end for
16: until stopflag is True
17: Bred ← B′, Tred ← T ′

18: Compute Mred from Bred and Tred

paper. We also note that, for two of the problems in Ta-
ble 2, we failed to generate a solver using the Gröbner fan
method [13] in a reasonable amount of time.

Table 3 performs a stability comparison of the solvers for
minimal problems from Table 2 as well as for the problems
from our main paper that were considered for comparison of
sizes but were left out from the stability comparison due to
the lack of space in the main paper. Just as in our main paper
we measure the mean and median of Log10 of the normal-
ized equation residuals for computed solutions as well as
the solvers failures as a % of 5K instances for which at least
one solution has a normalized residual > 10−3. Then our
observation from the stability comparisons in Table 2 of the
main paper is corroborated with our observations here for
these extra set of minimal problems in Table 3. We notice
that here as well, most of the solvers based on our proposed
method are similarly or more stable than the ones based on
Gröbner basis methods [11, 13] and with less failures.

Figure 1 shows histogram of Log10 of normalized equa-
tion residuals for the “Rel.pose λ+E+λ” problem whose sta-
bility was compared in Table 2 of our main paper. We note
that our solver is not only faster, but also more stable than
the state-of-the-art solvers. Additionally we provide his-
tograms of residuals in Figure 3 for other interesting min-
imal problems whose stability comparisons have also been
performed either in Table 3 here or in the Table 2 of our
main paper. The residuals have been obtained based on 5K

Algorithm 3 Removal of excess rows
Input Bred, Tred
Output Tsq, Msq

1: Tred contains {T ′1, . . . , T ′m+1}
2: BN ← |Bred|, TN ← Σm+1

j=1 |T ′j |, tchk ← φ
3: while TN > BN do
4: B′ ← Bred, T

′ ← Tred
5: T ′ contains {T ′1, . . . , T ′m+1}
6: Randomly select t ∈ {tm ∈ T ′m+1 | (tm,m + 1) /∈

tchk}
7: if t then
8: T ′m+1 ← T ′m+1 − {t}, T ′ ← {T ′1, . . . , T ′m+1}
9: tchk ← tchk ∪ {(t,m+ 1)}

10: else
11: Randomly select i ∈ {1, . . . ,m}
12: Randomly select t ∈ {ti ∈ T ′i | (ti, i) /∈ tchk}
13: T ′i ← T ′i − {t}, T ′ ← {T ′1, . . . , T ′m+1}
14: tchk ← tchk ∪ {(t, i)}
15: end if
16: B′λ ← B′ ∩ T ′m+1, B′c ← B′ −B′λ
17: Compute M′ from B′ and T ′

18: if min
j
|T ′j | > 0 and rank(M′) = |B′| then

19: A12 ← submatrix of M′ column indexed by B′c and
row indexed by T ′1 ∪ · · · ∪ T ′m

20: if rank(A12) = |B′c| then
21: Tred ← T ′, TN ← Σm+1

j=1 |T ′j |
22: end if
23: end if
24: end while
25: Tsq ← Tred
26: Compute Msq from Bred and Tsq

runs on random input data points. We observe from these
histograms that our proposed solvers have comparable sta-
bility w.r.t. the state-of-the-art solvers based on Gröbner
basis [11] and heuristic-based solvers [13]. However an im-
portant measure of stability for real world applications is the
% of failures of a minimal solver. Here, we have measured
a solver’s failure as the number of instances with large val-
ues of the equation residual(say above 10−3) for computed
solutions. Using this failure metric, we observe that our
proposed resultant-based solvers for the four problems, Un-
synch. Rel. pose [2], Rel. pose λ1+F+λ2 9pt [9], Optimal
PnP (Cayley) [14] and Abs. pose refractive P5P [5] clearly
have less failures than the state-of-the-art Gröbner basis and
heuristic-based solvers. We also note that for four problems
from Figure 3, i.e. Rel. pose f+E+f 6pt [9], Abs. pose re-
fractive P5P [5], Rel. pose E+fλ 7pt [8] and Optimal pose
2pt v2 [16], our proposed solvers are smaller than the state-
of-the-art solvers based on Gröbner basis [11] and heuristic-
based solvers [13]. Moreover, we note from the Table 1 of



Problem Our Original* [11] GFan [13] (#GB) Heuristic [13]

Rolling shutter pose (8 sols.) 47× 55 48× 56 [15] 47× 55 47× 55 (520) 47× 55
Triangulation from satellite im. (27 sols.) 87× 114 93× 120 [17] 88× 115 88× 115 (837) 88× 115
Optimal pose 2pt v2 (24 sols.) 176× 200 192× 216[16] 192× 216 − ? 192× 216
Optimal PnP (Cayley) (40 sols.) 118× 158 118× 158 [14] 118× 158 118× 158 (2244) 118× 158
Optimal PnP (Hesch) (27 sols.) 87× 114 93× 120 [7] 88× 115 88× 115 (837) 88× 115

Table 2. Comparison of sizes of solvers for some more minimal problems. Missing entries are when we failed to generate a Gröbner fan
solver in reasonable time. (∗): Sizes for the original formulations.

Problem Our [11] Heuristic [13]

mean med. fail(%) mean med. fail(%) mean med. fail(%)

Rel. pose F+λ 8pt −14.26 −14.43 0 −13.74 −14.26 0.14 −14.18 −14.48 0
Rel. pose E+f 6pt −13.17 −13.44 0 −12.87 −13.17 0 −13.05 −13.34 0
Rel. pose E+λ 6pt −11.65 −11.94 0.34 −11.42 −11.72 0.52 −11.34 −11.68 0.94
Stitching fλ+R+fλ 3pt −13.22 −13.42 0 −13.06 −13.37 0.16 −13.20 −13.46 0.02
Rel. pose λ1+F+λ2 9pt −9.81 −10.08 3.32 −9.81 −10.39 5.14 −9.56 −9.98 6.10
Rel. pose E+fλ 7pt (elim. fλ) −10.71 −10.95 0.38 −10.57 −10.90 0.30 −11.04 −11.32 0.32
Abs. pose quivers(†) −12.39 −12.60 0 −11.18 −11.51 0.32 −12.48 −12.88 0
Rolling shutter pose −12.16 −12.34 0 −12.52 −12.72 0 −12.43 −12.65 0
Triangulation from satellite im. −11.67 −11.80 0 −11.53 −11.83 0.76 −11.61 −11.93 0.5
Optimal pose 2pt v2 −9.85 −10.04 0.1 −10.85 −10.83 0.1 −10.36 −10.61 0.1
Optimal PnP (Cayley) −9.14 −9.45 3.64 −8.38 −8.74 10.28 −8.42 −8.75 7.64
Optimal PnP (Hesch) −11.07 −11.34 0.98 −11.36 −11.72 0.82 −11.05 −11.36 0.1
Unsynch. Rel. pose(‡) −10.26 −10.40 0 −8.13 −8.64 3.84 −9.93 −10.19 0.86

Table 3. A comparison of stability for solvers generated by our proposed resultant-based method, solvers generated using [11] and heuristic-
based solvers [13] on some more minimal problems. Mean and median are computed from Log10 of normalized equation residuals.
Missing entries are when we failed to extract solutions to all variables. (†): Input polynomials were eliminated using G-J elimination
before generating a solver using our resultant method as well as solvers based on [11] and the heuristic-based solver [13]. (‡): Alternate
eigenvalue formulation used for generating the solver based on our proposed method(see Proposition 3.1 in our main paper).
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Figure 1. Histogram of Log10 normalized equation residual error
for Rel. pose λ + E + λ 6pt problem

the main paper, our proposed solver for the problem of Un-
synch. Rel. pose [2], is significantly smaller than the com-
petitive solvers for the same formulation of the problem.

E+fλ solver on synthetic scenes: Here we show results
from the synthetic experiment presented in the main pa-
per. We studied the numerical stability of the new resultant-
based solver for the problem of estimating the relative pose
of one calibrated and one camera with unknown focal length
and radial distortion from 7-point correspondences, i.e. the
Rel. pose E+fλ 7pt problem. We considered the formula-

-20 -15 -10 -5 0 5

Log
10

 relative focal length error

0

0.05

0.1

0.15

0.2

0.25
Rel. pose E+f  7pt (elim )

GB 52x71 [11]

GFan 37x46 [13]

Heuristic 24x43 [13]

New resultant 22x41

-20 -15 -10 -5 0 5

Log
10

 relative radial distortion error

0

0.05

0.1

0.15

0.2

0.25
Rel. pose E+f  7pt (elim )

GB 52x71 [11]

GFan 37x46 [13]

Heuristic 24x43 [13]

New resultant 22x41

Figure 2. Histograms of (left) Log10 relative error in focal length,
(right) Log10 relative error in radial distortion for Rel. pose E+fλ
7pt (elimλ) problem.

tion “elim. λ” proposed in [13] that leads to the smallest
solvers. We studied the stability on 10K synthetically gen-
erated scenes as described in the main paper, see Section
4.1.

Figure 2 (left) shows Log10 of the relative error of the fo-
cal length f obtained by selecting the real root closest to the
ground truth fgt while (right) shows Log10 of the relative
error of the distortion parameter λ obtained by selecting the
real root closest to the ground truth λgt. All tested solvers
provide stable results with only a small number of runs with
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Figure 3. Histograms of Log10 of normalized equation residual error for nine selected minimal problems.

larger errors. The new resultant-based solver (blue) is not
only smaller but also slightly more stable than the heuristic-
based solver from [13] (green).

P4Pfr solver on real images: Here we show additional
statistics for the real experiment presented in our main pa-
per where we evaluated our proposed solver for the problem
of estimating the absolute pose of a camera with unknown
focal length and radial distortion from four 2D-to-3D point
correspondences, i.e. the P4Pfr solver. We consider the Ro-
tunda dataset, which was proposed in [10] and in [12] it
was used for evaluating P4Pfr solvers. This dataset consists
of 62 images captured by a GoPro Hero4 camera with sig-
nificant radial distortion. The Rotunda reconstruction con-
tains 170994 3D points and the average reprojection error
was 1.4694 pixels over 549478 image points. We used the
3D model to estimate the pose of each image using our new
P4Pfr resultant-based solver (28×40) in a RANSAC frame-
work. Similar to [12], we used the camera and distortion
parameters obtained from [1] as ground truth for the exper-
iment.

In Table 4 we present the errors for the focal length, ra-
dial distortion, and the camera pose obtained using our pro-

posed solver and for the sake of comparison we also list
the errors, which were reported in [12], where the P4Pfr
(40x50) solver was tested on the same dataset. Overall the
errors are quite small, e.g. most of the focal lengths are
within 0.1% of the ground truth and almost all rotation er-
rors are less than 0.1 degrees, which shows that our new
solver as well as the original solver work well for real data.
The results of both solvers are very similar. However, we
do take note that the slightly different values of errors are
mainly due to RANSAC’s random nature.
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