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1. BRDF Model
We use a simplified version of the Disney BRDF

model [1] proposed by Karis et al. [2]. Let A, N , R, S be
the diffuse albedo, normal, roughness and specular albedo
respectively, L and V be the light and view direction, and
H = V+L

2 be their half vector. Our BRDF model is defined
as:

f(A,N,R,L, V ) =
A

π
+
D(H,R)F (V,H, S)G(L, V,H,R)

4(N · L)(N · V )
(1)

where D(H,R), F (V,H, S) and G(L, V,H,R) are the nor-
mal distribution, fresnel and geometric terms respectively.
These terms are defined as follows:

D(H,R) =
α2

π [(N ·H)2(α2 − 1) + 1]
2

α = R2

F (V,H, S) = S + (1− S)2−[5.55473(V ·H)+6.8316](V ·H)

G(L, V,R) = G1(V,N)G1(L,N)

G1(V,N) =
N · V

(N · V )(1− k) + k

G1(L,N) =
N · L

(N · L)(1− k) + k

k =
(R+ 1)2

8

2. Network Architecture
We have talked about the motivations, design and core

components of our depth prediction network and SVBRDF
prediction network in Sec. 3.1 and Sec. 3.2 in the paper. We
now introduce the network architectures in detail as shown
in Fig. 1.

Depth prediction network. As discussed in Sec. 3.1 in the
paper, the depth prediction network consists of three parts:
the feature extractor F , the correspondence predictor C and
the guidance map extractor G. The feature extractor F and
the correspondence predictor C are used to predict the initial

depth map D′i; the guidance map extractor is applied to
refine D′i using a guided filter [5] to obtain the final depth
Di. Figure 1 shows the details of these sub-networks in the
first row.

We use the feature extractor and the correspondence pre-
dictor to regress the initial depth, similar to [7]. In particular,
the feature extractor F is a 2D U-Net that consists of multi-
ple downsampling and upsampling convolutional layers with
skip links, group normalization (GN) [6] layers and ReLU
activation layers; it extracts per-view image feature maps
with 16 channels.

To predict the depth Di at reference view i, we uni-
formly sample 128 frontal parallel depth planes at depth
d1, d2, . . . , d128 in front of that view within a pre-defined
depth range [d1, d128] that covers the target object we want
to capture. We project the feature maps from all views onto
every depth plane at view i using homography-based warp-
ing to construct the plane sweep volume of view i. We then
build a cost volume by calculating the variance of the warped
feature maps over views at each plane. The correspondence
predictor C is a 3D U-Net that processes this cost volume;
it has multiple downsampling and upsampling 3D convolu-
tional layers with skip links, GN layers and ReLU layers.
The output of C is a 1-channel volume, and we apply soft-
max on this volume across the depth planes to obtain the
per-plane depth probability maps P1, . . . , P128 of the 128
depth planes; these maps indicate the probability of the depth
of a pixel being the depth of each plane. A depth map is then
regressed by linearly combining the per-plane depth values
weighted by the per-plane depth probability maps:

D′i =

128∑
q=1

Pq ∗ dq. (2)

We apply the guidance map extractor G to refine the initial
depth D′i. G is a 2D U-Net that outputs a 1-channel feature
map. We use the output feature map as a guidance map to
filter the initial depth D′i and obtain the final depth Di.

SVBRDF prediction network. We have discussed the
SVBRDF prediction network in Sec. 3.2, and shown the
overall architecture, input and output in Fig. 2 and Fig. 3 of
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2D feature map noted with channel number

k 2D k × k Conv, stride 1+ Sigmoid

k 2D k × k Conv, stride 2 + GN + ReLU

k 2D k × k Conv, stride 1 + GN + ReLU

k Nearest neighbor upsample + 2D k × k Conv stride 1 + GN + ReLU

Skip link

Features from skip links

k 3D k × k × k Conv, stride 2 + GN + ReLU

k 3D k × k × k Conv, stride 1 + GN + ReLU

k Nearest neighbor upsample + 3D k × k × k Conv stride 1 + GN + ReLU

k 3D k × k × k Conv, stride 1+Tanh

3D feature volume noted with channel number

k 2D k × k Conv, stride 1+ Tanh

Feature extractor Guidance map extractor Correspondence predictor

Encoder SVBRDF decoder

Figure 1: Our network architecture.

the paper. We now introduce the details of the encoder E and
the SVBRDF decoderD in Fig. 1 (bottom row). Specifically,
the encoder consists of a set of convolutional layers, followed
by GN and ReLU layers; multiple convolutional layers with
a stride of 2 are used to downsample the feature maps three
times. The decoder upsamples the feature maps three times
with nearest-neighbor upsampling, and applies convolutional
layers, GN and ReLU layers to process the feature maps at
each upsampling level. As discussed in Sec. 3.2 of the paper,
we apply four decoders with the same architecture, which
are connected with the same encoder, to regress three BRDF
components and the normal map at each input view.

3. Comparison on SVBRDF Prediction

In Sec. 4.1 and Tab. 1 of the paper, we have shown quan-
titative comparisons on synthetic data between our network,
the naı̈ve U-Net and a single-image SVBRDF prediction
network proposed by Li et al. [3]. We now demonstrate qual-
itative comparisons between these methods on both synthetic
and real examples in Fig. 5, Fig. 6, Fig. 7 and Fig. 8. From
these figures, we can see that the naı̈ve U-Net produces noisy
normals and the single-view method [3] produces normals
with very few details, whereas our predicted normals are of
much higher quality, especially in regions where there are
serious occlusions (indicated by the red arrow). In contrast,
as reflected by the comparison on synthetic data in Fig. 5 and

Fig. 6, our predictions are more accurate and more consistent
with the ground truth than the other methods. These results
demonstrate that our novel network architecture (see Sec. 3.2
in the paper) allows for effective aggregation of multi-view
information and leads to high-quality per-view SVBRDF
estimation.

4. Comparison on Geometry Reconstruction

In Fig. 6 of the paper, we compare our optimized geome-
try against the optimized result from Nam et al. [4] that uses
the same initial geometry as ours. We show additional com-
parisons on real data in Fig. 2. Similar to the comparison in
the paper, our optimized geometry is of much higher quality
than Nam et al. with more fine-grained details and fewer
artifacts.

5. Additional Ablation Study

In this section, we demonstrate additional experiments
to justify the design choices in our pipeline, including in-
put variants of the SVBRDF estimation network, non-rigid
warping and per-vertex refinement.

Network inputs. Our SVBRDF network considers the in-
put image (Ii), the warped images (Ii←j), the light/viewing
(which are collocated) direction maps (Li and Li←j), and
the depth maps (Zi←j and Z∗i←j) as inputs (please refer to



[Nam et al. 2018] Our op�mized geometry [Nam et al. 2018] Our op�mized geometry 

Figure 2: Comparison with Nam et al. [4] on geometry optimization. Our results have more fine-grained details and fewer
artifacts.

Without warping With warping

Figure 3: Comparison between optimizations with and with-
out per-view warping. Our method with warping removes
the ghosting artifacts around the edges.

Network input Diffuse Normal Roughness Specular
Ii←j 0.0081 0.0456 0.0379 0.0098
Ii, Ii←j 0.0071 0.0363 0.0304 0.0109
Ii, Ii←j , Zi←j , Z

∗
i←j 0.0063 0.0321 0.0306 0.0098

Ii, Ii←j , Li, Li←j 0.0061 0.0304 0.0299 0.0093
Ours full 0.0061 0.0304 0.0275 0.0086

Table 1: Quantitative comparisons between networks trained
with different inputs on the synthetic test set.

Sec. 3.2 in the paper for details of these input components).
We verify the effectiveness of using these inputs by training
and comparing multiple networks with different subsets of
the inputs. In particular, we compare our full model against
a network that uses only the warped image Ii←j , a network
that considers both Ii←j and the reference image Ii, a net-
work that uses the reference image, warped image and the
depth, and a network that uses the reference image, warped
image, and the viewing directions. Table. 1 shows the quanti-
tative comparisons between these networks on the synthetic

Without refinement With refinement

Figure 4: Comparison on results with and without per-vertex
refinement. With the refinement, our method is able to re-
cover high-frequency details such as the spots on the object.

testing set. The network using a pair of images (Ii, Ii←j)
improves the accuracy for most of the terms over the one
that uses only the warped image (Ii←j), which reflects the
benefit of involving multi-view cues in the encoder network.
On top of the image inputs, the two networks that involve
additional depth information (Zi←j , Z∗i←j) and the view-
ing directions (Li, Li←j) both obtain better performance
than the image-only versions, which leverage visibility cues
and photometric cues from the inputs respectively. Our full
model is able to leverage both cues from multi-view inputs
and achieves the best performance.

Per-view warping. Due to potential inaccuracies in the
geometry, the pixel colors of a vertex from different views
may not be consistent. Directly minimizing the difference
between the rendered color and the pixel color of each view
will lead to ghosting artifacts, as shown in Fig. 3. To solve
this problem, we propose to apply a non-rigid warping to
each view. From Fig. 3 we can see that non-rigid warping
can effectively tackle the misalignments and leads to sharper
edges.

Per-vertex refinement. As shown in Fig. 4, the image ren-
dered using estimated SVBRDF without per-vertex refine-



ment loses high-frequency details such as the tiny spots
on the pumpkin, due to the existence of the bottleneck in
our SVBRDF network. In contrast, the proposed per-vertex
refinement can successfully recover these details and repro-
duces more faithful appearance of the object.
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Figure 5: Qualitative comparison of SVBRDF estimation on synthetic data. Note that Li et al. [3] do not predict specular
albedo.
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Figure 6: Qualitative comparison of SVBRDF estimation on synthetic data. Note that Li et al. [3] do not predict specular
albedo.
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Figure 7: Qualitative comparison of SVBRDF estimation on real data. Note that Li et al. [3] do not predict specular albedo.
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Figure 8: Qualitative comparison of SVBRDF estimation on real data. Note that Li et al. [3] do not predict specular albedo.


