
Appendix for ENSEI: Efficient Secure Inference via Frequency-Domain
Homomorphic Convolution for Privacy-Preserving Visual Recognition

A. Appendix: Correctness for Eq. (17) to
Eq. (19)

For some input û, weight vector ŵ, secret share ŝB , HSS
modulus pA, NTT modulus pN, we have

(INTT(û ◦ ŵ − ŝB) mod pA)k (1)

=

nf−1∑
0

((ûi · ŵi − ŝB,i) mod pA)ω
ik mod pN (2)

=
(nf−1∑

0

((ûi · ŵi − ŝB,i) mod pA)ω
ik mod pN

)
mod pA

(3)

Assuming pA ≥ pN, we know that for any x, x mod
pA mod pN ≡ x mod pN.

=
(nf−1∑

0

((ûi · ŵi) mod pA − (ŝB,i) mod pA)ω
ik

mod pN

)
mod pA

(4)

=
(nf−1∑

0

((ûi · ŵi) mod pN − (ŝB,i) mod pN)ω
ik

mod pN

)
mod pA

(5)

=
(nf−1∑

0

(ûi · ŵi mod pN)ω
ik mod pN

)
mod pN

−
(nf−1∑

0

(ŝB,i mod pN)ω
ik mod pN

)
mod pN

(6)

= (INTT(û ◦ ŵ)− INTT(ŝB)) mod pA (7)
= ((u ∗w − sB) mod pN) mod pA, (8)

To remove the additive secret sharing, observe that

((u ∗w − sB) mod pN mod pA + sB) mod pN (9)
= u ∗w mod pN − sB mod pN + sB mod pN (10)
= u ∗w mod pN, (11)

and this addition can be computed homomorphically using
any additive homomorphic encryption scheme.

B. Appendix: Neural Architectures

1. Convolution: input image 3× 32× 32, weight matrix 64× 3× 3,
number of output channels 64:
R64×32×32 ←

∑
R3×32×32 ∗ R64×3×3 + ReLU.

2. Convolution: input image 64× 32× 32, weight matrix 64× 3× 3,
number of output channels 64:
R64×32×32 ← R64×32×32 ∗ R64×3×3 + ReLU.

3. Average Pooling: Outputs R64×16×16.

4. Convolution: input image 64× 16× 16, weight matrix 64× 3× 3,
number of output channels 64:
R64×16×16 ← R64×16×16 ∗ R64×3×3 +ReLU.

5. Convolution: same as 6).

6. Average Pooling: Outputs R64×8×8

7. Convolution: input image 64 × 8 × 8, weight matrix 64 × 3 × 3,
number of output channels 64: R64×8×8 ← R64×8×8 ∗R64×3×3

+ ReLU.

8. Convolution: input image 64 × 8 × 8, weight matrix 64 × 1 × 1,
number of output channels 64: R64×8×8 ← R64×8×8 ∗R64×1×1

+ ReLU.

9. Fully Connected: Outputs the classification result R10×1 ←
R10×1024 · R1024×1

Figure 1. The neural architecture from Fig. 13 in [21]

C. Appendix: ENSEI based on FFT
Please refer to Fig. 7.

D. Security of ENSEI
Proposition 1. If there exists an efficient algorithm A that
learns Bob’s model in ENSEI with non-negligible probabil-
ity, then there also exists an efficient algorithm for that of
Gazelle.

1

1. Convolution: input image 3× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R3×32×32 ∗ R32×3×3 + ReLU.

2. Convolution: input image 32× 32× 32, weight matrix 64× 3× 3,
number of output channels 64:
R64×32×32 ← R32×32×32 ∗ R64×3×3 + Square Activation.

3. Average Pooling: Outputs R64×16×16.

4. Convolution: input image 64× 16× 16, weight matrix 64× 3× 3,
number of output channels 64:
R64×16×16 ← R64×16×16 ∗ R64×3×3 + ReLU.

5. Convolution: input image 64× 16× 16, weight matrix 64× 3× 3,
number of output channels 64:
R64×16×16 ← R64×16×16 ∗ R64×3×3 + Square Activation.

6. Average Pooling: Outputs R64×8×8

7. Convolution: input image 64 × 8 × 8, weight matrix 64 × 3 × 3,
number of output channels 64: R64×8×8 ← R64×8×8 ∗R64×3×3

+ ReLU.

8. Convolution: input image 64 × 8 × 8, weight matrix 64 × 1 × 1,
number of output channels 64: R64×8×8 ← R64×8×8 ∗R64×1×1

+ ReLU.

9. Fully Connected: Outputs the classification result R10×1 ←
R10×1024 · R1024×1

Figure 2. The modified neural architecture from Fig. 13 in [21],
where the number of channels in the first convolution layer is re-
duced by half, and the second and fifth activation function is re-
placed with square activation.

Proof. We prove Proposition 1 by construction. Since we
assumed thatA can obtain the model of Bob given all of the
information of Alice, we notice that the same computations
are carried out in the time domain in the Gazelle protocol.
Therefore, upon some initial image inputs, Alice runs the
following procedures.

1. Give Bob the time domain response and execute the
Gazelle protocol.

2. For all the inputs to Bob and outputs from Bob, trans-
form the (either plaintext of secret-shared) results into
the frequency domain.

3. After the execution of the Gazelle protocol, feed all
time- and frequency-domain input and output results to
A. SinceA can efficiently solve for Bob’s model given
all the frequency-domain responses, Alice obtains the
same model with the Gazelle protocol.

1. Convolution: input image 3× 32× 32, weight matrix 16× 3× 3,
number of output channels 16:
R16×32×32 ←

∑
R3×32×32 ∗ R16×3×3 + Batch Normalization

+ Binary Activation.

2. Convolution: input image 16× 32× 32, weight matrix 16× 3× 3,
number of output channels 16:
R16×32×32 ←

∑
R16×32×32 ∗R16×3×3 + Batch Normalization

+ Binary Activation.

3. Same as Layer 2.

4. Average Pooling: Outputs R16×16×16.

5. Convolution: input image 16× 16× 16, weight matrix 32× 3× 3,
number of output channels 32:
R32×16×16 ←

∑
R16×16×16 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

6. Convolution: input image 32× 16× 16, weight matrix 32× 3× 3,
number of output channels 32:
R32×16×16 ←

∑
R16×16×16 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

7. Same as Layer 6.

8. Average Pooling: Outputs R32×8×8

9. Convolution: input image 32 × 8 × 8, weight matrix 48 × 3 × 3,
number of output channels 48:
R48×6×6 ←

∑
R32×8×8 ∗ R48×3×3 + Batch Normalization +

Binary Activation.

10. Convolution: input image 48 × 6 × 6, weight matrix 48 × 3 × 3,
number of output channels 48:
R48×4×4 ←

∑
R48×6×6 ∗ R48×3×3 + Batch Normalization +

Binary Activation.

11. Convolution: input image 48 × 4 × 4, weight matrix 64 × 3 × 3,
number of output channels 64:
R64×2×2 ←

∑
R48×4×4 ∗ R64×3×3 + Batch Normalization +

Binary Activation.

12. Average Pooling: Outputs R64×1×1

13. Fully Connected: Outputs the classification result R10×1 ←
R10×64 · R64×1

Figure 3. BC2 from [25]

1. Convolution: input image 3× 32× 32, weight matrix 16× 3× 3,
number of output channels 16:
R16×32×32 ←

∑
R3×32×32 ∗ R16×3×3 + Batch Normalization

+ Binary Activation.

2. Convolution: input image 16× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R16×32×32 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

3. Convolution: input image 32× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R32×32×32 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

4. Same as Layer 3.

5. Average Pooling: Outputs R32×16×16.

6. Convolution: input image 32× 16× 16, weight matrix 48× 3× 3,
number of output channels 48:
R32×16×16 ←

∑
R48×16×16 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

7. Convolution: input image 48× 16× 16, weight matrix 64× 3× 3,
number of output channels 64:
R64×16×16 ←

∑
R48×16×16 ∗R64×3×3 + Batch Normalization

+ Binary Activation.

8. Convolution: input image 64× 16× 16, weight matrix 80× 3× 3,
number of output channels 80:
R80×16×16 ←

∑
R64×16×16 ∗R80×3×3 + Batch Normalization

+ Binary Activation.

9. Average Pooling: Outputs R80×8×8

10. Convolution: input image 80 × 8 × 8, weight matrix 96 × 3 × 3,
number of output channels 96:
R96×6×6 ←

∑
R80×8×8 ∗ R96×3×3 + Batch Normalization +

Binary Activation.

11. Convolution: input image 96 × 6 × 6, weight matrix 96 × 3 × 3,
number of output channels 96:
R96×4×4 ←

∑
R96×6×6 ∗ R96×3×3 + Batch Normalization +

Binary Activation.

12. Convolution: input image 96× 4× 4, weight matrix 128× 3× 3,
number of output channels 128:
R128×2×2 ←

∑
R96×4×4 ∗R128×3×3 + Batch Normalization +

Binary Activation.

13. Average Pooling: Outputs R128×1×1

14. Fully Connected: Outputs the classification result R10×1 ←
R10×128 · R128×1

Figure 4. BC3 from [25]

1. Convolution: input image 3× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R3×32×32 ∗ R32×3×3 + Batch Normalization

+ Binary Activation.

2. Convolution: input image 32× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R32×32×32 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

3. Convolution: input image 32× 32× 32, weight matrix 48× 3× 3,
number of output channels 48:
R48×32×32 ←

∑
R32×32×32 ∗R48×3×3 + Batch Normalization

+ Binary Activation.

4. Convolution: input image 48× 32× 32, weight matrix 64× 3× 3,
number of output channels 64:
R64×32×32 ←

∑
R48×32×32 ∗R64×3×3 + Batch Normalization

+ Binary Activation.

5. Convolution: input image 64× 32× 32, weight matrix 64× 3× 3,
number of output channels 64:
R64×32×32 ←

∑
R64×32×32 ∗R64×3×3 + Batch Normalization

+ Binary Activation.

6. Average Pooling: Outputs R64×16×16.

7. Convolution: input image 64× 16× 16, weight matrix 80× 3× 3,
number of output channels 80:
R80×16×16 ←

∑
R64×16×16 ∗R80×3×3 + Batch Normalization

+ Binary Activation.

8. Convolution: input image 80× 16× 16, weight matrix 80× 3× 3,
number of output channels 80:
R80×16×16 ←

∑
R80×16×16 ∗R80×3×3 + Batch Normalization

+ Binary Activation.

9. Same as Layer 8.

10. Same as Layer 8.

11. Average Pooling: Outputs R80×8×8

12. Convolution: input image 80× 8× 8, weight matrix 128× 3× 3,
number of output channels 128:
R128×6×6 ←

∑
R80×8×8 ∗R128×3×3 + Batch Normalization +

Binary Activation.

13. Convolution: input image 128× 6× 6, weight matrix 128× 3× 3,
number of output channels 128:
R128×4×4 ←

∑
R128×6×6 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

14. Convolution: input image 128× 4× 4, weight matrix 128× 3× 3,
number of output channels 128:
R128×2×2 ←

∑
R128×4×4 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

15. Average Pooling: Outputs R128×1×1

16. Fully Connected: Outputs the classification result R10×1 ←
R10×128 · R128×1

Figure 5. BC4 from [25]

1. Convolution: input image 3× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R3×32×32 ∗ R32×3×3 + Batch Normalization

+ Binary Activation.

2. Convolution: input image 32× 32× 32, weight matrix 32× 3× 3,
number of output channels 32:
R32×32×32 ←

∑
R32×32×32 ∗R32×3×3 + Batch Normalization

+ Binary Activation.

3. Same as Layer 2.

4. Same as Layer 2.

5. Convolution: input image 32× 32× 32, weight matrix 48× 3× 3,
number of output channels 48:
R48×32×32 ←

∑
R32×32×32 ∗R48×3×3 + Batch Normalization

+ Binary Activation.

6. Convolution: input image 48× 32× 32, weight matrix 48× 3× 3,
number of output channels 48:
R48×32×32 ←

∑
R48×32×32 ∗R48×3×3 + Batch Normalization

+ Binary Activation.

7. Average Pooling: Outputs R48×16×16.

8. Convolution: input image 48× 16× 16, weight matrix 80× 3× 3,
number of output channels 80:
R80×16×16 ←

∑
R48×16×16 ∗R80×3×3 + Batch Normalization

+ Binary Activation.

9. Convolution: input image 80× 16× 16, weight matrix 80× 3× 3,
number of output channels 80:
R80×16×16 ←

∑
R80×16×16 ∗R80×3×3 + Batch Normalization

+ Binary Activation.

10. Same as Layer 7.

11. Same as Layer 7.

12. Same as Layer 7.

13. Same as Layer 7.

14. Average Pooling: Outputs R80×8×8

15. Convolution: input image 80× 8× 8, weight matrix 128× 3× 3,
number of output channels 128:
R128×6×6 ←

∑
R80×8×8 ∗R128×3×3 + Batch Normalization +

Binary Activation.

16. Convolution: input image 128× 8× 8, weight matrix 128× 3× 3,
number of output channels 128:
R128×8×8 ←

∑
R128×8×8 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

17. Same as 16.

18. Convolution: input image 128× 8× 8, weight matrix 128× 3× 3,
number of output channels 128:
R128×6×6 ←

∑
R128×8×8 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

19. Convolution: input image 128× 6× 6, weight matrix 128× 3× 3,
number of output channels 128:
R128×4×4 ←

∑
R128×6×6 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

20. Convolution: input image 128× 4× 4, weight matrix 128× 3× 3,
number of output channels 128:
R128×2×2 ←

∑
R128×4×4 ∗ R128×3×3 + Batch Normalization

+ Binary Activation.

21. Average Pooling: Outputs R128×1×1

22. Fully Connected: Outputs the classification result R10×1 ←
R10×128 · R128×1

Figure 6. BC5 from [25]

Alice Bob
1. ûr,0, ûi,0 = IntFFT2D(u0)
2. [ûr,0] = Enc(ûr,0,K)
3. [ûi,0] = Enc(ûi,0,K)
4.

[ûr,0],[ûi,0]−−−−−−−−−−→ [ûr,0 ◦ ŵr,0] = [ûr,0] � ŵr,0

5. [ûi,0 ◦ ŵi,0] = [ûi,0] � ŵi,0

6. [ûr,0 ◦ ŵi,0] = [ûr,0] � ŵi,0

7. [ûi,0 ◦ ŵr,0] = [ûi,0] � ŵr,0

8. [v̂r,0] = [ûr,0 ◦ ŵr,0]� [ûi,0 ◦ ŵi,0]
9. [v̂i,0] = [ûr,0 ◦ ŵi,0]� [ûi,0 ◦ ŵr,0]
10. [ŝA,r,0] , ŝB,r,0 = HomShare([v̂r,0])
11. [ŝA,i,0] , ŝB,i,0 = HomShare([v̂i,0])

12. ŝA,r,0 = Dec([ŝA,r,0])
[ŝA,r,0],[ŝA,i,0]←−−−−−−−−−−−−

13. ŝA,i,0 = Dec([ŝA,i,0])

14. sA,r,0, sA,i,0 = IntIFFT2D(ŝA,r,0, ŝA,i,0) sB,r,0, sB,i,0 = IntIFFT2D(ŝB,r,0, ŝB,i,0)

15.
sA,r,0,sA,i,0−−−−−−−−−−→ Circuit

sB,r,0,sB,i,0←−−−−−−−−−−
16.

sA,r,1,sA,i,1←−−−−−−−−−− Garbling
sB,r,1,sB,i,1−−−−−−−−−−→

17. ŝA,r,1, ŝA,i,1 = IntFFT2D(sA,r,1, sA,i,1) ŝB,r,1, ŝB,i,1 = IntFFT2D(sB,r,1, sB,i,1)
18. [ŝA,r,1] = Enc(ŝA,r,1,K)
19. [ŝA,i,1] = Enc(ŝA,i,1,K)
20.

[ŝA,r,1,ŝA,i,1]−−−−−−−−−−−→ [ŷr,1] = HomRec([ŝA,r,1] , ŝB,r,1)
21. [ŷi,1] = HomRec([ŝA,i,1] , ŝB,i,1)

...

Figure 7. One start and one intermediate rounds of the Gazelle protocol with frequency-domain convolution via IntFFT2D.

