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Abstract

This document supplements our main paper entitled Synchronizing Probability Measures on Rotations via Optimal Trans-
port. In specifics, we provide a background section on the technical part, the explicit form of the gradients required by the
algorithm, a more detailed explanation on our assumptions and the composition functions. We also include the pseudocode
of our method and two additional experiments: (1) on a real SfM dataset, (2) on the mug sequence shown in the main paper.

1. Connection to Maximum Likelihood Estimation (MLE) and Markov Random Fields (MRF)
Rotation synchronization has been studied in the literature under the name multiple rotation averaging. The standard

single-particle based methods such as SE-Sync [13] assume a unimodal Gaussian/Langevin distribution. There are two
caveats with that. First, the classical approaches cannot yield explicit uncertainty estimates, and second a unimodal dis-
tribution cannot capture ambiguities that can be multimodal. DISCO has tackled this problem via MRFs and loopy belief
propagation [7]. In fact our formulation is similar when the nodes are assumed to have uniform prior. Yet, like K-best syn-
cronization [15], DISCO requires a single pairwise potential, as opposed to the multimodal distributions we have. To the best
of our knowledge, such MRF methods have not been extended to work in our setting. Note that differently to all those our
approach falls in the non-parametric inference.

2. Optimal Transport on Riemannian Manifolds
Here we denote by X a Riemannian manifold, which can be for instance the set of unit quaternions H.

2.1. Optimal Transport

For two given probability distributions ν and µ in P2(X), we denote by Π(ν, µ) the set of couplings between ν and µ,
i.e.: Π(ν, µ) contains all joint distributions π on X×X such that if (X,Y ) ∼ π then X ∼ ν and Y ∼ µ. The 2-Wasserstein
distance on P2(X) is defined by means of an optimal coupling between ν and µ:

W 2
2 (ν, µ) := inf

π∈Π(ν,µ)

∫
‖x− y‖2 dπ(x, y) ∀ν, µ ∈ P2(X) (1)

It is a well established fact that such optimal coupling π∗ exists [16, 14] . Moreover, W2 enjoys a dynamical formulation
which gives it an interpretation as the length of the shortest path connecting ν and µ in probability space. It is summarized
by the celebrated Benamou-Brenier formula ([1]):

W2(ν, µ) = inf
(ρt,Vt)t∈[0,1]

∫ 1

0

∫
‖Vt(x)‖2dρt(x), (2)
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where the infimum is taken over all couples ρ and v satisfying a continuity equation with boundary conditions:

∂tρt + div(ρtVt) = 0, ρ0 = ν, ρ1 = µ. (3)

The above equation expresses two facts, the first one is that −div(ρtVt) reflects the infinitesimal changes in ρt as dictated
by the vector field (also referred to as velocity field) Vt, the second one is that the total mass of ρt does not vary in time as a
consequence of the divergence theorem. Equation Eq (3) is well defined in the distribution sense even when ρt does not have
a density and Vt can be interpreted as a tangent vector to the curve (ρt)t∈[0,1].

In Sec. 2.4 we will see that the continuity equation in Eq (10) without terminal condition ρ1 = µ and for a well chosen
vector field Vt leads to a gradient flow in probability space.

2.2. First variation of a functional
Here we introduce the notion of first variation of a functional F which will be crucial to define the Wasserstein gradient

flow in Sec. 2.3. We then provide explicit expressions of this first variation in the case of the MMD and sinkhorn divergence.
Consider a real valued functional F defined over P2(X). We call ∂F∂ν if it exists, the unique (up to additive constants)

function such that d
dεF(ν + ε(ν′ − ν))|ε=0 =

∫
∂F
∂ν (ν)(dν′ − dν) for any ν′ ∈ P2(X). For a fixed ν, the function ∂F

∂ν (ν) is
a real valued function defined on X and is called the first variation of F evaluated at ν.

In the case of the squared MMD, a simple expression is obtained by direct calculation:

∂MMD2(ν, µ)

∂ν
(ν)(x) = 2

(∫
k(x, y)dν(y)−

∫
k(x, y)dµ(y)

)
. (4)

This can be easily estimated using samples from both µ and ν.
The first variation of the Sinkhorn is more involved. We first recall the expression of the Sinkhorn distance dc,α(µ, ν) in

terms of the optimal potential functions:

dc,α(µ, ν) =

∫
f(x)dµ(x) +

∫
g(x)dν(x) (5)

where f and g are unique up to an additive constant [9, Proposition 1]. In practice, given samples (Xi)1≤i≤N and (Yi)1≤i≤N
from ν and µ, f and g can be estimated on those values using the iterative sinkhorn algorithm, this provides vectors fi and gi
such that fi ∼ f(Xi) and gi ∼ g(Yi).

The first variation of the Sinkhorn distance is simply given by differentiating wrt ν:

∂dc,ε(µ, ν)

∂ν
(ν)(x) = g(x) (6)

However, g needs to be evaluated at arbitrary points x, while the Sinkhorn algorithm only provides the values gi and fi at the
sample points Xi and Yi. This is not an issue as noted in [10, 9]. Indeed, f and g are related by the equation:

g(x) = −ε log(

∫
exp(

f(y)− c(x, y)

ε
)dν(y)) (7)

Hence, g can be estimated by replacing the expectation by the empirical one and using the estimated values fi at the sample
points Yi :

ĝ(x) = −ε log(
1

N
exp(

fi − c(x, Yi)
ε

)). (8)

Finally, the variation of the Sinkhorn divergence, is obtained by summing those of each of it’s components:

∂Sc,ε(µ, ν)

∂ν
(ν)(x) = 2 ∗ ∂dc,ε(µ, ν)

∂ν
(ν)(x)− ∂dc,ε(ν, ν)

∂ν
(ν)(x). (9)

2.3. Wasserstein gradient flow
The formal gradient flow equation associated to a functional F can be written (see [4], Lemma 8 to 10):

∂νt
∂t

= div(νt∇
∂F
∂νt

) (10)



where div is the divergence operator and∇∂F
∂ν (x) is the Riemannian gradient of ∂

∂νF(x) which is an element of the tangent
space of X at point x. It can be shown that the probability distributions νt decrease F in time. More precisely the following
energy dissipation equation holds under mild regularity conditions on F :

F(νt) = −
∫
‖∇∂F

∂ν
(νt)(x)‖2dνt(x). (11)

F(νt) is a decreasing function in time, hence the interpretation of νt as a gradient flow of F .

2.4. Riemannian Particle Descent
The equation in 10 admits an equivalent expression in terms of particles which will be useful in practice:

Xt

dt
= −∇∂F

∂ν
(νt)(Xt) (12)

A discretization in time and space can be performed in the following way: Given N initial particles (Xi
0)1≤i≤N , and a

step-size γ, the following update rule can be used:

Xi
t+1 = expXit (−γ∇

∂F
∂ν

(ν̂t)(X
i
t)) (13)

where ν̂t is the particle measure at time t: ν̂t = 1
N

∑N
i=1 δXit and exp is the exponential map associated to the manifold

X. We refer to Sec. 3.1 for a closed form expression of the exponential map in the case of unit-quaternions. We provide
a pseudocode for the proposed RPGD algorithm in Algorithm 1. We also release our implementation under: https:
//synchinvision.github.io/probsync.

Algorithm 1: Riemannian Particle Gradient Descent for Measure Synchronization
input : Relative measures {µij}ni,j=1

output: Absolute measures {µi}ni=1
// Initialize the particles

q
(k)
i ∼ µi, i = 1, . . . , n, k = 1, . . . ,Kn

// Iterations
for t = 0, . . . T − 1 do
// For all cameras
for i = 1, . . . , n do
// Update the positions of the particles

q
(k)
i ← Exp

q
(k)
i

(
− ηq(w(k)

i )∇
q
(k)
i
L(µ)

)
k = 1, . . . ,Kn

// Update the weights of the particles -- Unconstrained case

β
(k)
i ← β

(k)
i − ηβ∇β(k)

i

(
L(µ) +R(µ)

)
k = 1, . . . ,Kn

// Update the weights of the particles -- Constrained case

β
(k)
i ← Exp

β
(k)
i

(
− ηβ∇β(k)

i

(
L(µ)

))

3. Analytic Form of the Gradients
In this section, we provide the analytical forms of the gradients required by our algorithm. We first recall the expression

of the normalized logarithm of a unit quaternion x := (a,v) which is given by:

log(x)

‖x‖
= (0,

v

‖v‖
) (14)

we also right logx(y) := log(x−1y). A subgradient of the Riemannian distance d(·) is given as follows:

∇xd(x ∈ H,y ∈ H) =

{
− sign(〈x,y〉) logx(y)

‖ logx(y)‖ ≡
(

0,−s v
‖v‖

)
x 6= y

0 x = y
(15)

https://synchinvision.github.io/probsync
https://synchinvision.github.io/probsync


where v denotes the imaginary part of x−1y and s := sign(〈x,y〉) is the sign of dot product between x and y with the
convention that s = 1 if the dot product is 0.

By using this formulation and the chain rule of differentiation, we obtain the gradient required by RPGD which is given
by Proposition 1. We finally combine this gradient with the gradient of the Sinkhorn divergence or the gradient of MMD by
using autodiff.

Proposition 1. The gradient of d(qiq
−1
j ,qij) w.r.t. qi and qj is given by:

∇qid(q̂ij ,qij)) = q−1
j ∇q̂ijd(q̂ij ,qij)qj (16)

∇qjd(q̂ij ,qij) = −∇qid(q̂ij ,qij) (17)

where q̂ij = qiq
−1
j

Proof. First recall that d is bi-invariant, hence:

d(q̂ij ,qij) = d(qi,qijqj)

Excluding the case when qi = qijqj (for which the expression is trivial), we have that:

∇qid(q̂ij ,qij) = ∇qid(qi,qijqj) = − sign(〈qi,qijqj〉)
logqi(qijqj)

‖ logqi(qijqj)‖
(18)

It is easy to see that 〈qi,qijqi〉 = 〈q̂ij ,qij〉 since composition of the two rotations qi and qij by qj preserves the angles.
On the other hand, one can observe that q−1

i qijqj = q−1
j q̂−1

ij qijqj and apply Lemma 1 to get:

logqi(qijqj)

‖ logqi(qijqj)‖
=

log(q−1
j q̂−1

ij qijqj)

‖ log(q−1
j q̂−1

ij qijqj)‖
= q−1

j

logq̂ij (qij)

‖ logq̂ij (qij)‖
qj , (19)

This shows the first identity. The second identity is obtained similarly. By bi-invariance of d, we have that d(q̂ij ,qij) =
d(qj ,q

−1
ij qi), hence:

∇qjd(q̂ij ,qij) = ∇qjd(qj ,q
−1
ij qi) = − sign(〈qj ,q−1

ij qi〉)
logqj (q

−1
ij qi)

‖ logqj (q
−1
ij qi)‖

. (20)

Moreover, we have that q−1
j q−1

ij qi = (q−1
i qijqj)

−1, thus using that log(x−1) = − log(x) and that 〈qj ,q−1
ij qi〉 =

〈qi,qijqj〉 it follows :

∇qjd(q̂ij ,qij) = sign(〈qi,qijqj〉)
logqi(qijqj)

‖ logqi(qijqj)‖
. (21)

which concludes the proof.

Lemma 1. Let x and q be unit quaternions, then the following holds:

log(q−1xq)

‖ log(q−1xq)‖
= q−1 log(x)

‖ log(x)‖
q (22)

(23)

Proof. Let’s first prove the first equality, we write x = (b, w) and q = (c, v) where b and c are the real parts of x and q while
w and v are their complex part. by definition of the quaternion product, we have that:

q−1xq = (b, (c2 − ‖v‖2)w + 2〈v, w〉v + 2cw ∧ v) (24)

Let’s call Z = (c2 − ‖v‖2)w + 2〈v, w〉v + 2cw ∧ v to simplify notations. Hence, we have by definition of the logarithm:

log(q−1xq)

‖ log(q−1xq)‖
= (0,

Z

‖Z‖
) (25)



On the other hand, we also have that log(x)
‖ log(x)‖ = (0, w

‖w‖ ), hence:

q−1 log(x)

‖ log(x)‖
q = (0,

1

‖w‖
(
c2 − ‖v‖2)w + 2〈v, w〉v + 2cw ∧ v

)
:= (0,

Z

‖w‖
)

We have shown that q−1 log(x)
‖ log(x)‖q and log(q−1xq)

‖ log(q−1xq)‖ have the same direction, since both are unit vectors, they must be
equal.

3.1. Exponential map in quaternion space
We provide a closed form expression for the exponential map used in the update rule: let q be an element in the unit

quaternion manifold, i.e: ‖q‖ = 1 , and v an element of it’s tangent space which is necessarily of the form v = (0, w) where
w is a vector in R3. Indeed, a vanishing first component insures that the v doesn’t contain components that are orthogonal to
the unit quaternion manifold.

expq(v) = q exp(v) := q(cos(‖w‖), sin(‖w‖) w

‖w‖
) (26)

4. The Composition Function
• High entropy: In this case gij is given by:

gij(µ) =

Ki∑
ki=1

Kj∑
kj=1

w
(ki)
i w

(kj)
j δ

q
(ki)

i q
(kj)

j

(27)

• Low entropy In this case, Ki = Kj = K and the weights satisfy the additional constraint: w(k)
i = w

(k)
j = w(k) for

some non-negative numbers (w(k))1≤k≤K that sum to 1. Moreover, we have that:

gij(µ) =

K∑
k=1

w(k)δ
q
(k)
i q

(k)
j

(28)

5. More Details about the Theoretical Result
We start by detailing the assumption H3. In particular, we will give the precise definition of a non-degenerate minimum.

We denote by q a vector of n quaternions (q1, ...,qn) and by (q∗)(k) the k-th particle from the optimal distribution µ∗. We
will introduce the same objects as in [6, section 3.1]. Note that in all our setting we fix the ratio of the learning rates α :=

ηβ
ηq

to 0.1. Let us first define J (µ) = L(µ) +R(µ) and denote by J ′µ? the differential of J at µ? [6].The local kernel matrix
H , is defined as a matrix in R(K∗×(1+4n))2 as follows:

H(k,l:l+4),(k′,l′:l′+4) =

{
∇2

ql,ql′
J ′µ?

(
(q?)(k)

)
if k = k′ and l, l′ ≥ 1

0 if l = 0 or l′ = 0
, (29)

where∇2ql,ql′ denotes the Hessian matrix that is composed of the partial derivatives ∂ql∂ql′ . We also introduce the features
Φ((q1, ...,qn)) and Ψ defined by:

Φ((q))ij = y 7→ k(gij(q), y)

Ψij = y 7→
∫
k(y′, y) dµij(y

′)

for all (i, j) ∈ E . Hence, the loss function L(µ) can be re-expressed as:

L(µ) = N (

∫
Φ(q) dµ(q)) :=

∑
(i,j)∈E

‖
∫
φij(q) dµ(q)−Ψij‖2H. (30)



Finally, we define the global kernel K given by:

K(k,l),(k′,l′) = 〈βk∇̄Φ((q?)(k)), βk′∇̄Φ((q?)(k′))〉d2Rf? (31)

where βk are such that the optimal weights w?k satisfy: w?k = β2
k , the extended gradient ∇̄ is defined to be ∇̄Φ := (2αΦ,∇Φ)

and the inner product is taken w.r.t. hessian of N at f? =
∫

Φ(q) dµ?(q) as in [6]. Note that in general K is positive semi-
definite, however, as we will see now, H3 requires it to be definite. Now, we precise the definition of H3 as follows:

H3. The following conditions hold.

• The matrix K is positive definite.

• The smallest singular value of H is strictly larger than 0.

• The only points where J ′ vanishes are the optimal particles (q?)(j).

Accordingly, we precise the statement of the theorem given in the main paper.

Theorem 1. Consider the LE setting (28) and Case 2 defined in the main paper (i.e. unconstrained case in Alg. 1). Assume
that H1-4 hold. Then, for any 0 < ε ≤ 1/2, there exists C > 0 and ρ ∈ (0, 1), such that the following inequality holds:

J (µ(κ))− J (µ?) ≤
(
J (µ(0))− J (µ?)

)
(1− ρ)

κ−κ0 (32)

where κ = 0, 1, . . . denotes the iterations is a constant, and κ0 = C/
(
J (µ(0))− J (µ?)

)2+ε
.

6. Additional Evaluations
Evaluations on the real 1D-SFM dataset [17] We now evaluate two versions of our algorithm on the common benchmark
introduced in 1D-SFM [17]. In particular, we compare our results with Chatterjee and Govindu [5] as well as the Weiszfeld
rotation averaging [11]. Our results summarized in Tab. 1 demonstrate that the quality of our single particle version (Ours
- K=1) matches well with the state of the art. We also use multiple particles (K = 10) to model the pose distributions
even though we have single observed particle corresponding to the relative rotation. This is in essence similar to K-best
synchronization [15] and such approach can explain the uncertainty of the estimates as empirical distributions. The results
are shown in the column Ours - K=10. We pick the best rotation as the particle that has the maximum weight. To achieve
this we use the version where we also optimize for the weights. It is seen that such a K-best scheme can have more chances
to find the correct mode and even if we are not using explicit M-estimators yields reduced errors that are almost on par with
the most-robust methods like Chatterjee & Govindu [5]. In this evaluation we minimize the p-norm with p = 1.1. In fact this
finding also aligns well with our theory, where optimizing for weights allows us to find a better minimum: A large number
of particles initialized randomly ensures the coverage of all basins of attraction of the loss, while optimizing the weights
allows to ‘kill’ particles in bad local minima, in favor of those near global optima. The classical problem where k = 1 only
allows one particle which can fall in a bad local minimum and can neither escape nor be killed. This is also the reason why
our theorem is not applicable to the classical synchronization. It is noteworthy that in this evaluation we omitted the large
scenes as our algorithm is computationally more costly than the algorithms specifically designed to solve the single-particle
synchronization problem.

Measure Synchronization on the Mug Sequence We have now evaluated our algorithm on the mug object shown in
our main paper. To do that, we render the depth image of the 3D CAD model of the mug from various viewpoints. For
each viewpoint, we back-project the depth image, creating a partial 3D view. When the handle is invisible, the partial view
corresponds to a simple cylinder that is hard to match uniquely. We also store the object rotations for each view. The pose
of the first image is set to identity. We then impose the graph structure by connecting each view to the 5-nearest. For each
edge, we run the voting based point pair feature matching of [8, 3]. The output of this algorithm are K poses ranked by the
voting score. We set K = 12 so that the pairwise marginals contain 12 particles. Such a procedure yields a set of diverse
poses for pairs where multiple alignments are possible, and distributions with single peaks when there exist exact alignments
dominating the voting table. We visualize this in Fig. 1. We then run our algorithm on the obtained distributions and record
the median and minimum angular errors measured by the geodesic distance. Our algorithm can match the ground truth pose
by an error of 4◦ while the median error of all particles is around 19◦. The latter occurs as we are trying to match the entire



Table 1. Median angular errors on 1D-SFM dataset [17].
1DSFM - Scene Chatterjee & Govindu [5] Weiszfeld [11] Ours - K=1 Ours - K=10

Alamo 2.14 3.57 1.66 1.43
Ellis Island 1.15 1.66 0.86 0.86
Madrid Metropolis 3.08 4.37 4.01 3.50
Montreal Notre Dame 0.71 0.92 0.92 0.96
NYC Library 1.40 2.43 2.12 2.12
Piazza del Popolo 2.62 3.35 2.98 1.26
Roman Forum 1.70 2.11 3.61 5.21
Tower of London 2.45 2.73 2.63 2.69
Vienna Cathedral 4.64 5.14 1.89 1.70
Yorkminister 1.62 2.73 1.89 1.89

Average 2.15 2.90 2.26 2.16

distribution rather than a single best. Note that the ability to characterize the entirety of the possibilities is unique to our
approach and as shown in this example, is of practical value. For the details of pairwise pose estimation we refer the reader
to [8, 3]. Any other pairwise registration algorithm could have been used to obtain the relative rotations provided that multiple
potentially uncorrelated solutions can be obtained. In this regard, ICP [2]-like algorithms such as FGR [18] or algorithms
that strictly seek a single pose such as [12] are discouraged.

Rendered Model

Pairwise

Distribution

(ambiguous)

Pairwise

Distribution

(non-ambiguous)

Figure 1. Mug dataset. Each view is back-projected to 3D space creating a partial point cloud. We then estimate multiple possible poses
for each pair of points within the vicinity by using a voting based algorithm. This figure shows that such distributions are peaked when
objects can be registered uniquely and dispersed when multiple solutions do exist.
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