
– Supplemental Document –
DeepDeform: Learning Non-rigid RGB-D Reconstruction

with Semi-supervised Data

In this supplemental document, we provide further de-
tails about our approach. Online benchmark is presented
in Sec. 1, network architecture and training is described in
Sec. 2, the details of our least-squares GPU solver are given
in Sec. 3, dataset statistics are provided in Sec. 4, the dense
alignment that is used for training data generation is detailed
in Sec. 5, and more qualitative matching and reconstruc-
tion results are given in Sec. 6, including a comparison to
KillingFusion [3].

1. Online Benchmark
We made dataset publicly available and can be down-

loaded from https://github.com/AljazBozic/
DeepDeform. We provide an online benchmark for two
tasks: optical flow estimation and non-rigid reconstruc-
tion. Benchmark is available at http://kaldir.vc.
in.tum.de/deepdeform_benchmark. The evalua-
tion metrics follow the metrics described in the paper. For
optical flow we evaluated average pixel error and pixel ac-
curacy (i.e., ratio of pixels with less than 20 pixel error).
For non-rigid reconstruction we evaluate average deforma-
tion and geometry error in cm.

2. Network Details
In this section, both the network architecture and the

training process are described in detail.

2.1. Architecture Details

The network takes as input an RGB-D frame of dimen-
sion 224 × 224 × 6, with 3 channels for RGB and 3 chan-
nels for backprojected depth points. The network outputs
are a heatmap of size 224 × 224 × 1, another heatmap of
size 224× 224× 1 and a visibility score of size 1× 1× 1.
The core unit used in our network is a residual block (as
visualized in Fig. 1), the other two building blocks are the
downscale (see Fig. 2) and the upscale (see Fig. 4) blocks.
Our Siamese network is based on two towers that share the
encoder. The encoder consists of residual blocks to extract
a feature tensor of dimension 7 × 7 × 96, with all layers
detailed in Fig. 3. Encoded features of the source and target
patch are concatenated along the dimension of the channels.
Afterwards, a bottleneck layer (dimension of 7 × 7 × 96)
is applied to reduce the feature dimension back to 96, see

Fig. 7. The network has one decoder that maps the features
after the bottleneck layer to a probability heatmap H and a
dense depth predictionD, its layer dimensions are provided
in Fig. 5. Our network architecture has skip connections
between the encoder and decoder, similar to a U-Net [2].
In addition to the decoder, there is also a small convolu-
tional network converting bottleneck features of dimension
7 × 7 × 96 to a visibility score O of dimension 1 × 1 × 1,
presented in Fig. 6.

Figure 1: Residual block: the core unit in our network.

Figure 2: Downscale block: building block of the encoder
network; it reduces the input dimension and increases the
feature size.

2.2. Training Details

We implemented our non-rigid matching approach in Py-
Torch [1] and trained it using stochastic gradient descent
with momentum (m = 0.9) and learning rate 0.01. For
regularization, we use a weight decay of 0.0005. We use a
batch size of 32. We divide the learning rate by 10 every

1

https://github.com/AljazBozic/DeepDeform
https://github.com/AljazBozic/DeepDeform
http://kaldir.vc.in.tum.de/deepdeform_benchmark
http://kaldir.vc.in.tum.de/deepdeform_benchmark


30k iteration steps. We first train the network for heatmap
and depth prediction for 100, 000 iterations. Afterwards, we
train only the visibility detection layers for another 100, 000
iterations, keeping the weights in the encoder and bottle-
neck layers fixed. We use different data augmentation tech-
niques, such as random 2D rotation, translation, and hori-
zontal flip. Every training sample is augmented on-the-fly.

Figure 3: Network encoder: our encoder network takes an
RGB-D frame (3 channels for RGB and 3 channels for the
backprojected depth points) as input and outputs a 7×7×96
feature tensor.

Figure 4: Upscale block: building block of the decoder
network; it increases the input dimension and decreases the
feature size.

Figure 5: Network decoder: the network decoder takes a
feature tensor of dimension 7×7×96 as input and outputs a
heatmap of dimension 224×224×1 and a depth prediction
of dimension 224 × 224 × 1. We employ skip connections
that directly provide encoded features of the source and tar-
get RGB-D frames to the upscale blocks.

Figure 6: Visiblity block: converts bottleneck features into
a visibility score ∈ [0, 1] that measures whether the source
point is visible (high value) or occluded (low value) in the
target frame.



3. Least Squares GPU Solver

We solve the following non-linear energy minimization
problem based on a data-parallel Gauss-Newton solver:

G∗ = argmin
G

Etotal(G) . (1)

To this end, we reformulate the energy function Etotal in
terms of a vector field F(G) by stacking all residuals:

Etotal(G) =
∣∣∣∣F(G)

∣∣∣∣2
2
.

In the following, we will drop the dependence on the param-
eters G to simplify the notation. We perform 10 non-linear
Gauss-Newton optimization steps. In each non-linear op-
timization step, the vector field F is first linearized using
a first order Taylor expansion. The resulting linear system
of normal equations is then solved based on a data-parallel
preconditioned conjugate gradient (PCG) solver. The nor-
mal equations are defined as follows:

JTJδ = −JTF .

Here, J is the Jacobian matrix of F. After solving the nor-
mal equations the unknowns are updated based on δ:

Gk = Gk−1 + δ .

Each normal equation is solved based on 20 iteration steps.
In each PCG step, we first materialize J in global GPU
memory. The central operation in the PCG solver is to ap-
ply the system matrix JTJ to the current decent direction.
In order to run in a data-parallel manner, we launch one
thread per residual term in F. Each thread reads the re-
quired entries of J (and therefore also of JT ) and computes
its contribution to the partial derivatives of the unknowns.
All contributions are summed up for each unknown using
atomic operations.

4. Dataset Statistics

We provide a train-val-test split using the following dis-
tribution of sequences: 340 sequences are in the training
set, 30 in the test set, and 30 in the validation set. We made
sure that there is no overlap between captured environments
between training and validation/test scenes. We crowd-
sourced a large number of annotations for the recorded
RGB-D sequences, which makes our dataset suitable for su-
pervised learning of correspondence matching, see Tab. 1.
Our novel dataset for learning non-rigid matching covers a
diverse range of non-rigid object classes, as shown in Fig. 8,
and also includes challenging deformations and camera mo-
tion, see Tab. 2.

Data type Count
Object masks 4, 479
Sparse matches 149, 228
Point occlusions 63, 512
Frame pairs 5, 533

Table 1: Dataset annotation statistics, presenting the total
number of annotations.

Motion type Average motion
2D change (pixel) 65.4
3D point motion (m) 0.22

Table 2: Motion and deformation statistics, computed from
correspondence annotations. Rigid camera motion is also
contained in the motion statistics.

Figure 7: Bottleneck: it combines the feature tensors that
correspond to the source and target RGB-D frames.

Figure 8: Object class variety: we include many different
sequences of dynamic objects, such as cloths, bags, etc.



Figure 9: For dense alignment, different optimization constraints are used to align the source mesh to the target mesh. Here
we qualitatively show the effect of different constraints on the alignment of the given RGB-D frame pair.

5. Dense Alignment Details
Given two RGB-D frames with dynamic object seg-

mentation masks and sparse correspondences, dense align-
ment computes dense matches between the source and tar-
get RGB-D frames. Initially, a mesh is extracted from the
source frame by back-projecting the pixels into 3D and us-
ing pixel-wise triangle connectivity. All vertices that are
outside the source object mask are filtered out. Afterwards,
a deformation graph is sampled uniformly over the source
object mesh, and the deformations T of all nodes that de-
form the source mesh onto the target mesh are estimated by
minimizing the following optimization energy:

Etotal(T ) =Edata(T ) + λphotoEphoto(T ) + λsilhEsilh(T )+

λsparseEsparse(T ) + λregEreg(T ) .

Data term Edata(T ) and regularization term Ereg(T ) are de-
fined the same as in the traditional non-rigid reconstruction
pipeline, minimizing point-to-point and point-to-plane dis-
tances, and using as-rigid-as-possible (ARAP) regulariza-
tion. As can be seen in Fig. 9, dense ICP constraints alone
can result in poor frame-to-frame alignment. A big im-
provement is achieved by using sparse match constraints,
defined as:

Esparse(T ) =
∑

(si,ti)∈M

(
WT (si)− ti

)2
.

Here si and ti are annotated match points, andWT (•) is the
deformation operator that for a given point takes the nearest
deformation nodes and executes linear blending of their de-
formations. An additional silhouette constraint encourages
all source mesh vertices to be projected inside the target ob-
ject’s mask:

Esilh(T ) =
∑
v∈S

(
PixDist(Π(WT (v))))2 .

Figure 10: For a target object (left), given its mask (middle),
we can compute the pixel distance map (right), with zero
distances inside the object mask and increasing distances
outside the object mask.

The constraint is computed for every vertex v in the source
mesh, where Π(•) is a projection from 3D to 2D image
space, and PixDist is the pixel distance map, computed as
shown in Fig. 10. Lastly, dense color constraints enable
alignment correction in cases where we have useful texture
information:

Ephoto(T ) =
∑
v∈S

(
∇It(Π(WT (v)))−∇Is(Π(v)))2 .

Here Is and It are source and target color images. We use
color gradients instead of raw colors to be invariant to con-
stant intensity change.

6. Qualitative Results
In the following figures we present more qualitative re-

sults. More specifically, in Fig. 11, our network heatmap
predictions are presented for a set of chosen points, in
Fig. 12 we provide a qualitative reconstruction comparison
to the approach of [3], and in Fig. 13 reconstruction results
of our method are shown, including the shape in the canon-
ical space.



Figure 11: Qualitative heatmap prediction results. Our approach works well even for highly non-rigid motions.



Figure 12: Qualitative reconstruction comparison of our approach to KillingFusion [3]. Reconstruction results were kindly
provided by the authors. Our approach obtains more robust and higher quality results.



Figure 13: Qualitative reconstruction results, showing both the warped model (in the current frame) and the canonical shape
(in the reference frame). Our approach obtains high quality reconstruction results.



References
[1] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch. 2017. 1

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[3] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and
Slobodan Ilic. Killingfusion: Non-rigid 3d reconstruction
without correspondences. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 3, page 7,
2017. 1, 4, 6


