
Learning a Neural Solver for Multiple Object Tracking
– Supplementary Material –

Guillem Brasó∗ Laura Leal-Taixé

Technical University of Munich

Abstract

As announced in the main paper, in this document we
provide: (i) a more exhaustive explanation of the network-
flow formulation on which our method is based (Section
1), (ii) a description of our rounding scheme (Section 2),
(iii) additional implementation details (Section 3), (iv) a
comparison of our method with previous graph-based MOT
works (Section 4).

1. Network Flow Formulation

In this section, we detail how the network flow-based
formulation we present in the main paper is related to the
original one proposed in [31]. See Figure 1 for an overview.

1.1. Active and Inactive Detections

Let G = (V,E) be a graph representing a multiple object
tracking (MOT) problem. In our method’s graph formu-
lation, we use nodes and edges to represent, respectively,
detections and possible links forming trajectories among
them. Moreover, we assign a binary variable y(i,j) to ev-
ery edge (i, j) ∈ E to represent whether the link between
detections i and j is active or not. Nodes, i.e., detections, do
not have any variable assigned to them, and we assume that
all detections in the graph are correct. That is, we assume
that there are no false positives in the graph1.

In the general min-cost flow formulation, instead,
detections are also represented with edges and they are
assigned, in turn, another binary variable that indicates
whether the detection is a true or false positive. Formally,
for the ith input detection this binary variable is denoted
as yi, and its value is one if the detection is a true positive,
i.e., it is active, and zero otherwise, i.e., it is inactive.

∗Correspondence to: guillem.braso@tum.de.
1We can make this assumption because we can easily filter false posi-

tives from our graphs during pre-processing and post-processing (see Sec-
tion 3).

By allowing nodes to be inactive, the flow conservation
constraints we described in the main paper:∑

(j,i)∈E s.t. ti>tj

y(j,i) ≤ 1 (1)

∑
(i,k)∈E s.t. ti<tk

y(i,k) ≤ 1 (2)

are no longer sufficient. Instead, these constraints need to
capture that, if a detection is inactive, both its incoming and
outgoing flows need to be zero. This is achieved by replac-
ing the right-hand-side of these inequalities with the binary
variable yi: ∑

(j,i)∈E s.t. ti>tj

y(j,i) ≤ yi (3)

∑
(i,k)∈E s.t. ti<tk

y(i,k) ≤ yi (4)

Observe that whenever yi = 0, all edges entering and leav-
ing detection i need to be inactive. In contrast, when yi = 1,
i.e., the detection is active, these constraints are equivalent
to the ones we use.

1.2. Source and Sink Nodes

In the classical min-cost flow formulation of MOT [31],
there are two special nodes: source and sink. Every detec-
tion i is connected to both of them, and the resulting edge
receives a binary variable denoted as yen,i and yext,i, re-
spectively. These are used to indicate whether a trajectory
starts or ends at i. Observe that yen,i = 1 if, and only if,
there is no detection j in a past frame such that yi,j = 1,
and analogously for yext,i = 1. Hence, these variables can
be used to transform inequalities 3 and 4 into equalities as:

yen,i +
∑

(j,i)∈E s.t. ti>tj

y(j,i) = yi (5)

yext,i +
∑

(i,k)∈E s.t. ti<tk

y(i,k) = yi (6)

(a) Tracking Output (b) Classical Flow Formulation (c) Simplified Flow Formulation

Figure 1: Overview of the simplification of the classical min-cost flow formulation of MOT used in our method. 1a shows
two frames with different trajectories indicated by different bounding box color. 1b shows the classical flow-based view of
the scenario: active detections are displayed with detection edges, and start (resp. ends) of trajectories are indicated with
connections to the source (S) (resp. source (T)) node. 1c shows the formulation used in our approach: no sink nor source
nodes are used, and active detections are represented with a single node.

which yield the flow conservation constraints introduced in
[31]. In the original min-cost flow formulation, these edges
are assigned a handcrafted cost indicating the price of start-
ing or ending a trajectory. If this cost is set to zero, one can
think about yen,i and yext,i as slack variables.

1.3. Overview of our Simplification

To summarize, in our method we simplify the min-cost
flow formulation by eliminating two elements of the clas-
sical one: detection edges and sink and source nodes. The
first choice allows us to decouple the data association prob-
lem from the identification of incorrect detections. Since
the latter task can be easily tackled in our pre-processing
and post-processing routines (see Section 3), we can sim-
plify our graph formulation and allow our network to focus
on the task of edge classification. As for not using sink
and source nodes, in our method there is no need for such
special variables. Instead, the start (resp. end) of a trajec-
tory is naturally indicated by the absence of active incoming
(resp. outgoing) edges to a node. Overall, we simplify the
min-cost flow MOT formulation and reduce it to its most
essential component: association edges. As a result, we ob-
tain a setting that is suited for our message passing network
to operate and effectively learn our task at hand.

2. Rounding Solutions
As explained in the main paper (Section 4.4), a forward

pass through our model yields a fractional solution to the
original flow problem with values between 0 and 1. Thanks

to our time-aware message passing network, binarizing this
solution directly by setting a threshold at 0.5 will yield a
solution that satisfies close to 99% of the flow conservation
constraints on average over test sequences (see Section 5.2
in the main paper). In order to guarantee that all of them
are satisfied, we propose two simple schemes, and describe
them in this section. See Figure 2 for a summary of our
procedure.

2.1. Greedy Rounding

In our setting, having a violated incoming (resp. outgo-
ing) flow conservation constraint means that, for some node,
there is more than one incoming (resp. outgoing) edge clas-
sified as active. Hence, a simple way to obtain a binary
solution satisfying all constraints is to only set as active the
incoming (resp. outgoing) edge with the maximum classifi-
cation score, for every node.

Let G = (V,E) a MOT graph. Observe that, by follow-
ing this simple policy, we are guaranteed to obtain a binary
feasible solution after o(∆(G)|V |) steps, where ∆(G) indi-
cates the maximum degree of any vertex in G. Indeed, ob-
serve that we have a total of 2|V | constraints, since for each
node, there are two flow conservation inequalities. Evalu-
ating each of these requires computing a sum of o(∆(G))
terms, and picking the edge with maximum score among
all neighbors in past / future frames has, again, complexity
o(∆(G)). Further observe that, by picking the edge with
the highest classification score no new constraints can be
violated. Indeed, setting all non-maximum incoming (resp.

2

(a) Output Graph Binarized by
Thresholding

(b) Subgraph of Violated Con-
straints

(c) Subgraph of Violated Con-
straints with Exact / Greedy
Rounding

(d) Final Graph

Figure 2: Toy example showing how we round our method’s output solutions. 2a shows the output of binarizing our method’s
output by setting a threshold on edge’s classification score at 0.5. Edges’ arrows indicate time direction. In the example, we
observe 4 violated constraints: outgoing flow is greater than 1 for both nodes 5 and 8, and incoming flow is greater than 1
for nodes 9 and 11. 2b shows the subgraph corresponding to the edges involved in these violated constraints, which requires
rounding by either our exact or greedy scheme. 2c shows indicates the result of rounding solutions in the subgraph. Hence,
it no longer has constraints violations. 2d shows the final graph, in which both the solutions obtained by thresholding in 2a,
and the rounding solutions of the subgraph in 2d are combined to yield the final trajectories.

outgoing) edges in a node to zero will make all remaining
left hand sides in inequalities 1 and 2 for other nodes be-
come smaller or equal. Hence, it is clear that, at most, 2|V |
iterations with o(∆(G)) operations each will be necessary,
which yields a total complexity of o(∆(G)|V |). See Algo-
rithm 1 for a summary of this procedure.

2.2. Exact Rounding

As we show in Table 1, the greedy rounding scheme we
just introduced works very well in practice. This is due to
the fact that our method’s output solutions already satisfy
almost all constraints and hence, there is little margin for
our rounding scheme to affect performance. However, in
general, greedy rounding is not guaranteed to be optimal.
We now explain how exact rounding can be performed via
linear programming.

Let ŷ ∈ [0, 1]|E|×1 denote the fractional output of our
network at every edge. Also let A ∈ {0, 1}2|V |×|E| be the
matrix resulting from expressing constraints 1 and 2 for all
nodes in matrix notation, and 12|V | a 2|V |−dimensional
column vector of ones corresponding to the constraint’s
right hand side. The exact rounding problem consists in
obtaining the binary solution yint ∈ {0, 1}|E|×1 satisfying
constraints 1 and 2 for all entries that is closest (w.r.t the
squared euclidean norm) to our networks’ output. Hence,
in matrix notation exact rounding can be formulated as:

minyint
‖yint − ŷ‖22

subject to Ayint ≤ 12|V |
yint ∈ {0, 1}|E|×1

However, the quadratic cost can be equivalently written as
a linear function. Indeed:

min
yint

‖yint − ŷ‖22 = min
yint

(yint − ŷ)T (yint − ŷ)

= min
yint

yTintyint − 2yTintŷ + ŷT ŷ

= min
yint

yTintyint − 2ytintŷ

= min
yint

yTint1|E| − 2yTintŷ

= min
yint

yTint(1|E| − 2ŷ)

Where 1|E| is an |E|−dimensional column vector of ones.
Observe that yTintyint = yTint1|E| holds due to the fact that
yint is a vector of ones and zeros.

Moreover, matrix A, is totally unimodular [6, 1], which
implies that the integrality constraints can be relaxed to box
constraints yint ∈ [0, 1]|E|×1. Therefore, we can relax our
original integer program to a linear program, and solve it in
polynomial time while still being guaranteed integer solu-
tions.

3

Algorithm 1: Greedy Rounding
Input : Graph G = (V,E)

Fractional solution ŷ
Result: Binary feasible solution y

1 // Threshold initial solution
2 foreach (i, j) ∈ E do
3 if ŷ(i,j) > 0.5 then
4 y(i,j) ← 1

5 else
6 y(i,j) ← 0

7 // Iterate over constraints
8 foreach i ∈ V do
9 // Set as inactive all edges but

the one with max. score
10 if Constraint 1 is violated then
11 j∗ ← argmaxj∈Npast

i
ŷ(i,j)

12 foreach j ∈ Npast
i \ {j∗} do

13 y(i,j) = 0

14 if Constraint 2 is violated then
15 j∗ ← argmaxj∈Nfut

i
ŷ(i,j)

16 foreach j ∈ Nfut
i \ {j∗} do

17 y(i,j) = 0

18 return y

In general, this optimization problem shows a straight-
forward connection between our setting and the general
min-cost flow problem. When naively rounding our solu-
tions with linear programming, we could view our model’s
output as edge costs in a min-cost-flow problem instance.
The key difference is that, in practice, we do not need to
solve the entire problem. Since our model’s output is almost
feasible, when rounding, we can obtain binary solutions for
almost all edges by directly thresholding their classification
scores. With the remaining edges in which flow conserva-
tion constraints are violated, we consider their correspond-
ing subgraph, which typically consists of less than 5% of
edges in the graph, and either solve the linear program we
have described or use the greedy procedure explained in
Subsection 2.1.

2.3. Performance Comparison

In Table 1, we compare the runtime and performance of
both rounding schemes with our model’s final configura-
tion. Both exact and greedy rounding show almost equal
performance, with greedy rounding having slightly lower
IDF1 (0.2 percentage points), equal MOTA and equal speed.
Overall this shows, that given the high constraint satisfac-
tion of our model’s solutions, the method for rounding has

Rounding MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz. ↓

Greedy 64.0 69.8 638 362 5703 115089 640 6.5
Exact 64.0 70.0 648 362 6169 114509 602 6.5

Table 1: We compare the effect of having an approximate
greedy rounding scheme, with respect to performing exact
rounding via linear programming. Both methods show al-
most the same performance, and a slight change in runtime
(Hz, in frames per second).

little effect on the tracking results. This is to be expected:
since there are few edges in which the rounding procedure
needs to be applied, there is little room to affect overall re-
sults. Instead, the key element driving performance in our
model is our message passing network formulation.

3. Further Implementation Details

In this section, we extend the information provided in
the main article about the implementation of our method.
As announced, in case of acceptance our source code will
be made publicly available.

3.1. Detailed Architecture

In Table 2, we specify the configuration of each of the
network’s components. Observe that our model is com-
posed of a total of 6 networks. The first two, N enc

v and
N enc

e , are used for feature encoding of nodes and edges,
respectively (see section 4.3 in the main paper). For neu-
ral message passing, we use one network to update edge
embeddings, Ne, and three networks to update node em-
beddings N past

v , N fut
v and Nv (see sections 4.1 and 4.2 in

the main paper). Lastly, to classify edges, we use another
network, N class

e (see section 4.4 in the main paper).

3.2. Batch Processing

As explained in the main paper, we process videos by
sequentially feeding overlapping batches of 15 frames to
our model. In the MOTChallenge, different sequences show
great variability regarding (i) number of frames per second
at which videos are recorded (ii) presence of camera move-
ment and (iii) number of detections per frame. To account
for (i) and (i), we sample a fixed and number of frames per
second for static and dynamic sequences, which we set to 6
and 9, respectively. To tackle (iii), we restrict the connec-
tivity of graphs by connecting two nodes only if both are
among the top-50 reciprocal nearest neighbors according to
the pretrained CNN features. This ensures that our model
scales to crowded sequences with no significant overhead,
and that the topology of our graphs is comparable among
different videos, which boosts our model’s generalization
capacity.

4

Layer Num. Type Output Size

Fe
at

ur
e

E
nc

od
er

s

Nodes (N enc
v)

0 Input 3× 128× 64
1 conv 7× 7 64× 64× 32
2 max pool 3× 3 64× 32× 16
3 conv1 256× 32× 16
4 conv2 512× 16× 8
5 conv3 1024× 8× 4
6 conv4 2048× 8× 4
7 GAP 2048
8 FC + ReLU 512
9 FC + ReLU 128

10 FC + ReLU 32
Edges (N enc

e)
0 Input 6
1 FC + ReLU 18
2 FC + ReLU 18
3 FC + ReLU 16

M
es

sa
ge

Pa
ss

in
g

N
et

w
or

k

Past Update (N past
v)

0 Input 80
1 FC + ReLU 56
2 FC + ReLU 32

Future Update (N fut
v)

0 Input 80
1 FC + ReLU 56
2 FC + ReLU 32

Node Update (Nv)
0 Input 64
1 FC + ReLU 32

Edge Update (Ne)
0 Input 160
1 FC + ReLU 80
2 FC + ReLU 16

C
la

ss
ifi

er

Edges (N class
e)

0 Input 16
1 FC + ReLU 8
2 FC + Sigmoid 1

Table 2: For each network component, we specify its num-
ber of layers and input / output dimensions. FC denotes a
fully connected layer and GAP, Global Average Pooling. .
For the Node Encoder,N enc

v , all layers up to position 7 cor-
respond to those of a ResNet50[7]. Hence, ‘layers’ 3 to 6
are actually sequences of residual blocks. The only modifi-
cation we have applied is using stride 1 in all convolutional
layers of conv4. Hence, there is no spatial size reduction
from conv3 to conv4.

3.3. Cross-Validation Splits

We conduct all of our experiments with 3-fold cross-
validation on the MOT17 benchmark training data. To do

so, we split the sequences into three subsets. For each ex-
periment configuration we train a total of 3 networks: one
for each possible validation set. Since our splits cover all
training sequences of MOT17, we obtain metrics over the
whole dataset which allow us to choose the best network
configuration and set of hyperparameters.

In Table 3, we report the validation sequences corre-
sponding to each split. For each of the splits, the sequences
not contained in its validation set are used for training, to-
gether with those of the MOT15 dataset.

When deciding which scenes to include in each split, we
made sure that each subset contains both moving and static
camera sequences. Furthermore, we balance the number of
tracks and sequence length in seconds (recall that fps is nor-
malized during processing) in each split, in order to ensure
that all validation settings are comparable.

Name Mov. Length (s) Length (f) Tracks Boxes

Split 1

MOT17-02 No 20 600 62 18581
MOT17-10 Yes 22 654 57 12839
MOT17-13 Yes 30 750 110 11642
Overall – 72 2004 229 43062

Split 2

MOT17-04 No 35 1050 83 47557
MOT17-11 Yes 30 900 75 9436
Overall – 65 1950 158 56993

Split 3

MOT17-05 Yes 60 837 133 6917
MOT17-09 No 18 525 26 5325
Overall – 78 1362 159 12242

Total

– 205 5316 546 112297

Table 3: We report the sequences used in each cross-
validation split in order to evaluate our model. Mov refers
to whether there is camaera movement in the scene and, for
length ’s’ denotes seconds and ’f’, frames. Note that in the
MOT17 benchmark, each sequence is given with three sets
of detections (DPM, FRCNN and SDP). Since the ground
truth does not change among them, here we report the fea-
tures of each sequence, and do not take into account the set
of detections. However, when testing our models, we make
use of all sets of detections.

3.4. Pre-processing and Post-processing

As we explain in the next section we use [2] to prepro-
cess public detections. As an alternative, for the results
in Section 4, we follow a similar detection preprocessing
scheme to the one applied by other methods [4, 30, 12]. We

5

use both the bounding box regressor and classifier heads of
a Faster-RCNN[19] trained on the MOT17 Detection chal-
lenge. We filter out all bounding boxes whose confidence
score is smaller than 0.5, and correct the remaining with
the bounding box regressor. After that, we apply standard
Non-Maxima-Supression to the resulting boxes, by using
each box’ confidence score, and setting an IoU threshold of
0.85. For post-processing, if using [2] we fill gaps in our tra-
jectories by matching our output trajectories to the ones in
[2], and then using the latter to fill the detections in missing
frames. For the remaining missing gaps in our trajectories,
we use bilinear interpolation. Finally, we drop all trajecto-
ries that consist of a single detection. This allows our model
to identify false positives as isolated nodes in the graph (i.e.
nodes with neither incoming nor outgoing active edges).

3.5. Baseline

As explained in the main paper, we use [2] as a base-
line. More specifically, we preprocess all sequences by first
running [2] on public detections. After that, we discard
the pedestrian ID assigned by [2], and simply treat the re-
sulting boxes as raw detections for our neural solver. [2]
uses the regression head of a Faster-R-CNN [19] in order to
predict the next locations of objects in neighboring frames
Other graph approaches resort to low-level image features
and work with raw (i.e. non-maxima suppressed) detec-
tions to approach this challenge [9, 25, 24, 26, 12]. Ob-
serve that using raw detections has indeed, more potential
than just adding neighboring detections with [2], as it yields
a greatly increased number of object hypothesis. Hence, it
allows tracking methods to have the capacity to track more
objects. However, [2] reduces computational times signif-
icantly, and provides more precise boxes, which improves
the efficiency of our method. We perform a detailed com-
parison with graph-based methods in the next section.

4. Additional Comparison with Graph Meth-
ods

As announced in the main paper, we provide an ex-
tended comparison of our method2 with top-performing of-
fline graph-based methods. The results are summarized in
Table 4. For each method, we highlight the additional fea-
tures and sources of information that it has access to. Ad-
ditionally, we provide the results obtained by our method

2We made a slight change in the configuration of our method for these
results. Since we do not have access to [2] and, hence, we have to rely
heavily on linear interpolation for postprocessing (see Section 3.4), we
augment the frame sampling rate at which we process sequences, and also
the size of graphs we process proportionally, in order to cover time inter-
vals of the same size of those of our main configuration. Specifically, we
increase the sampling rate of frames for static sequences from 6 to 9, and
from 9 to 15 for those with a moving camera. As for the number of frames
corresponding to each processed graph, we increase it from 15 to 25.

when we do not use our baseline [2] for preprocessing de-
tections, and we denote it with Ours*. We show that, even
in that case, our method still surpasses previous works by a
significant margin even though it has access to significantly
less information. Hence, these results confirm the superior-
ity of our approach at using restricted feature information.

Even without [2], in the MOT15[15] dataset we observe
an improvement of 19.8 points in MOTA and 15.6 points
in IDF1 with respect to [29], which uses the same underly-
ing Min-Cost Flow graph formulation, but a simpler learn-
ing scheme. Moreover, in all three datasets, our method
consistently improves significantly upon correlation clus-
tering and graph multi-cut based methods [11, 16, 12, 27],
which use a more involved graph formulation, have access
to a significantly larger number of boxes due to not using
Non-Maximum Suppression, and either employ low-level
image features or use a hierarchical scheme. Thus, we
clearly demonstrate that our method shows very strong per-
formance and surpasses previous work, even when it cannot
leverage low-level image information via [2]. Furthermore,
when our method is given access to additional features as
other methods, it shows its full potential and outperforms
all previous works by an even larger margin.

References
[1] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: Theory,

algorithms and applications. Prentice Hall, Upper Saddle
River, NJ, USA, 1993. 3

[2] P. Bergmann, T. Meinhardt, and L. Leal-Taixé. Tracking
without bells and whistles. The International Conference on
Computer Vision(ICCV), abs/1903.05625, 2019. 5, 6, 7

[3] L. Chen, H. Ai, R. Chen, and Z. Zhuang. Aggregate tracklet
appearance features for multi-object tracking. IEEE Signal
Processing Letters, 26(11):1613–1617, Nov 2019. 7

[4] L. Chen, H. Ai, Z. Zhuang, and C. Shang. Real-time multi-
ple people tracking with deeply learned candidate selection
and person re-identification. 2018 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 1–6, 2018.
5

[5] W. Choi. Near-online multi-target tracking with aggregated
local flow descriptor. ICCV, 2015. 7

[6] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera
people tracking with a probabilistic occupancy map. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(2):1806–1819, Feb. 2008. 3

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016. 5

[8] R. Henschel, L. Leal-Taixé, D. Cremers, and B. Rosenhahn.
Improvements to frank-wolfe optimization for multi-detector
multi-object tracking. CVPR, abs/1705.08314, 2017. 7

[9] R. Henschel, L. Leal-Taixé, B. Rosenhahn, and K. Schindler.
Tracking with multi-level features. Submitted to IEEE Trans-

6

Method MOTA ↑ IDF1 ↑ MT ↑ ML ↓ ID Sw. ↓ Hz ↑ Additional Features

2D MOT 2015 [14]

Ours 51.5 58.6 31.2 25.9 375 6.5 Box regression [2]
Ours* 46.6 53.8 25.2 29.0 381 6.5 ———
JointMC [11] 35.6 45.1 23.2 39.3 457 0.6 Point trajectories [18], opt. flow, no-NMS
QuadMOT [23] 33.8 40.4 12.9 36.9 703 3.7 Learnable box regression
MHT DAM [13] 32.4 45.3 16.0 43.8 435 0.7 ———
MCF PHD [29] 29.9 38.2 11.9 44.0 656 12.2 ———
DeepFlow [20] 26.8 – – – – – ALFD motion features [5]

MOT16 [17]

Ours 58.6 61.7 27.3 34.0 354 6.5 Box regression [2]
Ours* 54.3 56.8 23.5 36.0 440 6.5 ———
NOTA [3] 49.8 55.3 17.9 37.7 614 – Not public
HCC [16] 49.3 50.7 17.8 39.9 391 0.8 Tracklets, Deep Matching [28]
LMP [27] 48.8 51.3 18.2 40.1 481 0.5 Body part detections, Deep Matching [28], no-NMS
TLMHT [21] 48.7 55.3 15.7 44.5 413 4.8 Tracklets
FWT [8] 47.8 44.3 19.1 38.2 852 0.6 Head detections, Deep Matching [28]

MOT17 [17]

Ours 58.8 61.7 28.8 33.5 1185 6.5 Box regression [2]
Ours* 56.0 58.4 26.2 34.7 1451 6.5 ———
JBNOT [10] 52.6 50.8 19.7 35.8 3050 5.4 Joint detections, Deep Matching [28]
eHAF[22] 51.8 54.7 23.4 37.9 1834 0.7 Superpixels, Segmentation, Foreground Extraction
NOTA [3] 51.3 54.7 17.1 35.4 2285 – Not public
FWT [8] 51.3 47.6 21.4 35.2 2648 0.2 Head detections, Deep Matching [28]
jCC [11] 51.2 54.5 20.9 37.0 1802 1.8 Point trajectories [18], opt. flow

Table 4: We compare both our final method (Ours) and a variant of our method in which we do not exploit our baseline [2]
(Ours*) to other top-performing graph-based offline methods in the MOTChallenge benchmark. Under Additional Features,
we highlight which information sources or features each method used apart from the given public detections. We denote
with a horizontal line the absence of such features. For [3], we cannot provide this information, since the article is not freely
available. For [20], we report the only metric that the authors reported in their article. We still include it the table due to the
fact that it also follows the min-cost flow MOT formulation, and is similar in spirit to our work (see Related Work in the main
article).

actions on Pattern Analysis and Machine Intelligence, 2016.
6

[10] R. Henschel, Y. Zou, and B. Rosenhahn. Multiple people
tracking using body and joint detections. In CVPR Work-
shops, 2019. 7

[11] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Mo-
tion segmentation & multiple object tracking by correlation
co-clustering. PAMI, pages 1–1, 2018. 6, 7

[12] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. Mo-
tion segmentation and multiple object tracking by correlation
co-clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019. 5, 6

[13] C. Kim, F. Li, A. Ciptadi, and J. Rehg. Multiple hypothesis
tracking revisited: Blending in modern appearance model.
ICCV, 2015. 7

[14] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.
Motchallenge 2015: Towards a benchmark for multi-target

tracking. arXiv:1504.01942, 2015. 7

[15] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler.
Motchallenge 2015: Towards a benchmark for multi-target
tracking. arXiv:1504.01942, 2015. 6

[16] L. Ma, S. Tang, M. Blakc, and L. van Gool. Customized
multi-person tracker. 2019. 6, 7

[17] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler.
Mot16: A benchmark for multi-object tracking.
arXiv:1603.00831, 2016. 7

[18] P. Ochs, J. Malik, and T. Brox. Segmentation of moving ob-
jects by long term video analysis. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 36(6):1187–1200,
June 2014. 7

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Proceedings of the 28th International Conference on Neural

7

Information Processing Systems - Volume 1, NIPS’15, pages
91–99, Cambridge, MA, USA, 2015. MIT Press. 6

[20] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker. Deep
network flow for multi-object tracking. CVPR, 2017. 7

[21] H. Sheng, J. Chen, Y. Zhang, W. Ke, Z. Xiong, and J. Yu.
Iterative multiple hypothesis tracking with tracklet-level as-
sociation. IEEE Transactions on Circuits and Systems for
Video Technology, pages 1–1, 2018. 7

[22] H. Sheng, Y. Zhang, J. Chen, Z. Xiong, and J. Zhang. Het-
erogeneous association graph fusion for target association in
multiple object tracking. IEEE Transactions on Circuits and
Systems for Video Technology, 2018. 7

[23] J. Son, M. Baek, M. Cho, and B. Han. Multi-object tracking
with quadruplet convolutional neural networks. July 2017. 7

[24] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Sub-
graph decomposition for multi-target tracking. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5033–5041. IEEE, June 2015. 6

[25] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Multi-
person tracking by multicuts and deep matching. In ECCV
Workshop on Benchmarking Mutliple Object Tracking, 2016.
6

[26] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-
tiple people tracking by lifted multicut and person re-
identification. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3701–3710, Wash-
ington, DC, USA, July 2017. IEEE Computer Society. 6

[27] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Mul-
tiple people tracking by lifted multicut and person re-
identification. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3701–3710, July
2017. 6, 7

[28] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In 2013 IEEE International Conference on Computer
Vision, pages 1385–1392, Dec 2013. 7

[29] N. Wojke and D. Paulus. Global data association for the
probability hypothesis density filter using network flows. In
2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 567–572, May 2016. 6, 7

[30] Y.-C. Yoon, A. Boragule, K. Yoon, and M. Jeon. Online
multi-object tracking with historical appearance matching
and scene adaptive detection filtering. 2018 15th IEEE In-
ternational Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 1–6, 2018. 5

[31] L. Zhang, Y. Li, and R. Nevatia. Global data association for
multi-object tracking using network flows. CVPR, 2008. 1,
2

8

