
nuScenes: A multimodal dataset for autonomous driving
Supplementary Material

A. The nuScenes dataset

In this section we provide more details on the nuScenes
dataset, the sensor calibration, privacy protection approach,
data format, class mapping and annotation statistics.
Sensor calibration. To achieve a high quality multi-
sensor dataset, careful calibration of sensor intrinsic and ex-
trinsic parameters is required. These calibration parameters
are updated around twice per week over the data collection
period of 6 months. Here we describe how we perform sen-
sor calibration for our data collection platform to achieve a
high-quality multimodal dataset. Specifically, we carefully
calibrate the extrinsics and intrinsics of every sensor. We
express extrinsic coordinates of each sensor to be relative to
the ego frame, i.e. the midpoint of the rear vehicle axle. The
most relevant steps are described below:

• Lidar extrinsics: We use a laser liner to accurately
measure the relative location of the lidar to the ego
frame.

• Camera extrinsics: We place a cube-shaped calibration
target in front of the camera and lidar sensors. The cal-
ibration target consists of three orthogonal planes with
known patterns. After detecting the patterns we com-
pute the transformation matrix from camera to lidar by
aligning the planes of the calibration target. Given the
lidar to ego frame transformation computed above, we
compute the camera to ego frame transformation.

• Radar extrinsics: We mount the radar in a horizon-
tal position. Then we collect radar measurements by
driving on public roads. After filtering radar returns
for moving objects, we calibrate the yaw angle using
a brute force approach to minimize the compensated
range rates for static objects.

• Camera intrinsic calibration: We use a calibration tar-
get board with a known set of patterns to infer the in-
trinsic and distortion parameters of the camera.

Privacy protection. It is our priority to protect the pri-
vacy of third parties. As manual labeling of faces and li-
cense plates is prohibitively expensive for 1.4M images, we
use state-of-the-art object detection techniques. Specifically
for plate detection, we use Faster R-CNN [67] with ResNet-
101 backbone [39] trained on Cityscapes [19]7. For face
detection, we use [87]8. We set the classification thresh-
old to achieve an extremely high recall (similar to [31]). To
increase the precision, we remove predictions that do not
overlap with the reprojections of the known pedestrian and

7https://github.com/bourdakos1/Custom-Object-Detection
8https://github.com/TropComplique/mtcnn-pytorch

General nuScenes class Detection class Tracking class
animal void void
debris void void

pushable pullable void void
bicycle rack void void
ambulance void void

police void void
barrier barrier void
bicycle bicycle bicycle

bus.bendy bus bus
bus.rigid bus bus

car car car
construction construction vehicle void
motorcycle motorcycle motorcycle

adult pedestrian pedestrian
child pedestrian pedestrian

construction worker pedestrian pedestrian
police officer pedestrian pedestrian

personal mobility void void
stroller void void

wheelchair void void
trafficcone traffic cone void

trailer trailer trailer
truck truck truck

Table 5. Mapping from general classes in nuScenes to the classes
used in the detection and tracking challenges. Note that for brevity
we omit most prefixes for the general nuScenes classes.

vehicle boxes in the image. Eventually we use the predicted
boxes to blur faces and license plates in the images.
Data format. Contrary to most existing datasets [32, 61,
41], we store the annotations and metadata (e.g. localiza-
tion, timestamps, calibration data) in a relational database
which avoids redundancy and allows for efficient access.
The nuScenes devkit, taxonomy and annotation instructions
are available online9.
Class mapping. The nuScenes dataset comes with anno-
tations for 23 classes. Since some of these only have a
handful of annotations, we merge similar classes and re-
move classes that have less than 10000 annotations. This
results in 10 classes for our detection task. Out of these, we
omit 3 classes that are mostly static for the tracking task. Ta-
ble 5-SM shows the detection classes and tracking classes
and their counterpart in the general nuScenes dataset.
Annotation statistics. We present more statistics on the
annotations of nuScenes. Absolute velocities are shown in
Figure 11-SM. The average speed for moving car, pedes-
trian and bicycle categories are 6.6, 1.3 and 4 m/s. Note
that our data was gathered from urban areas which shows
reasonable velocity range for these three categories.

9https://github.com/nutonomy/nuscenes-devkit
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Figure 8. Top: Number of annotations per category. Bottom:
Attributes distribution for selected categories. Cars and adults are
the most frequent categories in our dataset, while ambulance is
the least frequent. The attribute plot also shows some expected
patterns: construction vehicles are rarely moving, pedestrians are
rarely sitting while buses are commonly moving.

Figure 9. Left: Bounding box size distributions for car. Right:
Category count in each keyframe for car, pedestrian, and bicycle.

We analyze the distribution of box annotations around
the ego-vehicle for car, pedestrian and bicycle categories
through a polar range density map as shown in Figure 12-
SM. Here, the occurrence bins are log-scaled. Generally,
the annotations are well-distributed surrounding the ego-
vehicle. The annotations are also denser when they are
nearer to the ego-vehicle. However, the pedestrian and bi-
cycle have less annotations above the 100m range. It can
also be seen that the car category is denser in the front and
back of the ego-vehicle, since most vehicles are following
the same lane as the ego-vehicle.

In Section 2 we discussed the number of lidar points in-
side a box for all categories through a hexbin density plot,
but here we present the number of lidar points of each cat-
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Figure 10. Top: radial distance of objects from the ego vehicle.
Bottom: orientation of boxes in box coordinate frame.
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Figure 11. Absolute velocities. We only look at moving objects
with speed > 0.5m/s.

egory as shown in Figure 13-SM. Similarly, the occurrence
bins are log-scaled. As can be seen, there are more lidar
points found inside the box annotations for car at varying
distances from the ego-vehicle as compared to pedestrian
and bicycle. This is expected as cars have larger and more
reflective surface area than the other two categories, hence
more lidar points are reflected back to the sensor.

Scene reconstruction. nuScenes uses an accurate lidar
based localization algorithm (Section 2). It is however dif-
ficult to quantify the localization quality, as we do not have
ground truth localization data and generally cannot perform
loop closure in our scenes. To analyze our localization
qualitatively, we compute the merged pointcloud of an en-
tire scene by registering approximately 800 pointclouds in
global coordinates. We remove points corresponding to the
ego vehicle and assign to each point the mean color value of
the closest camera pixel that the point is reprojected to. The
result of the scene reconstruction can be seen in Figure 15,
which demonstrates accurate synchronization and localiza-
tion.
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Figure 12. Polar log-scaled density map for box annotations where the radial axis is the distance from the ego-vehicle in meters and the
polar axis is the yaw angle wrt to the ego-vehicle. The darker the bin is, the more box annotations in that area. Here, we only show the
density up to 150m radial distance for all maps, but car would have annotations up to 200m.
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Figure 13. Hexbin log-scaled density plots of the number of lidar points inside a box annotation stratified by categories (car, pedestrian
and bicycle.

Figure 14. Hexbin log-scaled density plots of the number of lidar
and radar points inside a box annotation. The black line represents
the mean number of points for a given distance wrt the ego-vehicle.

Figure 15. Sample scene reconstruction given lidar points and
camera images. We project the lidar points in an image plane with
colors assigned based on the pixel color from the camera data.

B. Implementation details

Here we provide additional details on training the lidar
and image based 3D object detection baselines.

PointPillars implementation details. For all experi-
ments, our PointPillars [51] networks were trained using a
pillar xy resolution of 0.25 meters and an x and y range of
[−50, 50] meters. The max number of pillars and batch size
was varied with the number of lidar sweeps. For 1, 5, and
10 sweeps, we set the maximum number of pillars to 10000,
22000, and 30000 respectively and the batch size to 64, 64,
and 48. All experiments were trained for 750 epochs. The
initial learning rate was set to 10−3 and was reduced by a
factor of 10 at epoch 600 and again at 700. Only ground
truth annotations with one or more lidar points in the accu-
mulated pointcloud were used as positive training examples.
Since bikes inside of bike racks are not annotated individ-
ually and the evaluation metrics ignore bike racks, all lidar
points inside bike racks were filtered out during training.

OFT implementation details. For each camera, the Or-
thographic Feature Transform [69] (OFT) baseline was
trained on a voxel grid in each camera’s frame with an
lateral range of [−40, 40] meters, a longitudinal range of
[0.1, 50.1] meters and a vertical range of (−3, 1) meters.



Method Singapore Rain Night
OFT [69]† 6% 10% 55%

MDIS [70]† 8% -3% 58%
PP [51] 1% 6% 36%

Table 6. Object detection performance drop evaluated on subsets
of the nuScenes val set. Performance is reported as the relative
drop in mAP compared to evaluating on the entire val set. We
evaluate the performance on Singapore data, rain data and night
data for three object detection methods. Note that the MDIS re-
sults are not directly comparable to other sections of this work,
as a ResNet34 [39] backbone and a different training protocol are
used. (†) use only monocular camera images as input. PP uses
only lidar.

We trained only on annotations that were within 50 meters
of the car’s ego frame coordinate system’s origin. Using
the ‘visibility’ attribute in the nuScenes dataset, we also fil-
tered out annotations that had visibility less than 40%. The
network was trained for 60 epochs using a learning rate of
2 × 10−3 and used random initialization for the network
weights (no ImageNet pretraining).

C. Experiments

In this section we present more detailed result analysis
on nuScenes. We look at the performance on rain and night
data, per-class performance and semantic map filtering. We
also analyze the results of the tracking challenge.
Performance on rain and night data. As described in
Section 2, nuScenes contains data from 2 countries, as well
as rain and night data. The dataset splits (train, val, test)
follow the same data distribution with respect to these cri-
teria. In Table 6 we analyze the performance of three object
detection baselines on the relevant subset of the val set. We
can see a small performance drop for Singapore as com-
pared to the overall val set (USA and Singapore), particu-
larly for vision based methods. This is likely due to dif-
ferent object appearance in the different countries, as well
as different label distributions. For rain data we see only a
small decrease in performance on average, with worse per-
formance for OFT and PP, and slightly better performance
for MDIS. One reason is that the nuScenes dataset annotates
any scene with raindrops on the windshield as rainy, regard-
less of whether there is ongoing rainfall. Finally, night data
shows a drastic performance relative drop of 36% for the
lidar based method and 55% and 58% for the vision based
methods. This may indicate that vision based methods are
more affected by worse lighting. We also note that night
scenes have very few objects and it is harder to annotate ob-
jects with bad visibility. For annotating data, it is essential
to use camera and lidar data, as described in Section 2.
Per-class analysis. The per class performance of Point-
Pillars [51] is shown in Table 7-SM (top) and Figure 17-SM.
The network performed best overall on cars and pedestrians
which are the two most common categories. The worst per-

PointPillars
Class AP ATE ASE AOE AVE AAE

Barrier 38.9 0.71 0.30 0.08 N/A N/A
Bicycle 1.1 0.31 0.32 0.54 0.43 0.68

Bus 28.2 0.56 0.20 0.25 0.42 0.34
Car 68.4 0.28 0.16 0.20 0.24 0.36

Constr. Veh. 4.1 0.89 0.49 1.26 0.11 0.15
Motorcycle 27.4 0.36 0.29 0.79 0.63 0.64
Pedestrian 59.7 0.28 0.31 0.37 0.25 0.16

Traffic Cone 30.8 0.40 0.39 N/A N/A N/A
Trailer 23.4 0.89 0.20 0.83 0.20 0.21
Truck 23.0 0.49 0.23 0.18 0.25 0.41

Mean 30.5 0.52 0.29 0.50 0.32 0.37
MonoDIS

Class AP ATE ASE AOE AVE AAE
Barrier 51.1 0.53 0.29 0.15 N/A N/A
Bicycle 24.5 0.71 0.30 1.04 0.93 0.01

Bus 18.8 0.84 0.19 0.12 2.86 0.30
Car 47.8 0.61 0.15 0.07 1.78 0.12

Constr. Veh. 7.4 1.03 0.39 0.89 0.38 0.15
Motorcycle 29.0 0.66 0.24 0.51 3.15 0.02
Pedestrian 37.0 0.70 0.31 1.27 0.89 0.18

Traffic Cone 48.7 0.50 0.36 N/A N/A N/A
Trailer 17.6 1.03 0.20 0.78 0.64 0.15
Truck 22.0 0.78 0.20 0.08 1.80 0.14

Mean 30.4 0.74 0.26 0.55 1.55 0.13

Table 7. Detailed detection performance for PointPillars [51]
(top) and MonoDIS [70] (bottom) on the test set. AP: average
precision averaged over distance thresholds (%), ATE: average
translation error (m), ASE: average scale error (1-IOU), AOE: av-
erage orientation error (rad), AVE: average velocity error (m/s),
AAE: average attribute error (1− acc.), N/A: not applicable (Sec-
tion 3.1). nuScenes Detection Score (NDS) = 45.3% (PointPillars)
and 38.4% (MonoDIS).

forming categories were bicycles and construction vehicles,
two of the rarest categories that also present additional chal-
lenges. Construction vehicles pose a unique challenge due
to their high variation in size and shape. While the trans-
lational error is similar for cars and pedestrians, the orien-
tation error for pedestrians (21◦) is higher than that of cars
(11◦). This smaller orientation error for cars is expected
since cars have a greater distinction between their front and
side profile relative to pedestrians. The vehicle velocity es-
timates are promising (e.g. 0.24 m/s AVE for the car class)
considering the typical speed of a vehicle in the city would
be 10 to 15 m/s.

Semantic map filtering. In Section 4.2 and Table 7-SM
we show that the PointPillars baseline achieves only an AP
of 1% on the bicycle class. However, when filtering both
the predictions and ground truth to only include boxes on
the semantic map prior10, the AP increases to 30%. This
observation can be seen in Figure 16-SM, where we plot the
AP at different distances of the ground truth to the semantic
map prior. As seen, the AP drops when the matched GT is

10Defined here as the union of roads and sidewalks.



Method sAMOTA AMOTP sMOTAr MOTA MOTP TID LGD
(%) (m) (%) (%) (m) (s) (s)

Stan [16] 55.0 0.80 76.8 45.9 0.35 0.96 1.38
VVte 37.1 1.11 68.4 30.8 0.41 0.94 1.58

Megvii [90] 15.1 1.50 55.2 15.4 0.40 1.97 3.74
CeOp 10.8 0.99 26.7 8.5 0.35 1.72 3.18
CeVi† 4.6 1.54 23.1 4.3 0.75 2.06 3.82
PP [51] 2.9 1.70 24.3 4.5 0.82 4.57 5.93

MDIS [70]† 1.8 1.79 9.1 2.0 0.90 1.41 3.35

Table 8. Tracking results on the test set of nuScenes. PointPillars, MonoDIS (MaAB) and Megvii (MeAB) are submissions from the
detection challenge, each using the AB3DMOT [77] tracking baseline. StanfordIPRL-TRI (Stan), VVte (VV-team), CenterTrack-Open
(CeOp) and CenterTrack-Vision (CeVi) are the top submissions to the nuScenes tracking challenge leaderboard. (†) use only monocular
camera images as input. CeOp uses lidar and camera. All other methods use only lidar.

Figure 16. PointPillars [51] detection performance vs. semantic
prior map location on the val set. For the best lidar network (10 li-
dar sweeps with ImageNet pretraining), the predictions and ground
truth annotations were only included if within a given distance of
the semantic prior map.

farther from the semantic map prior. Again, this is likely
because bicycles away from the semantic map tend to be
parked and occluded with low visibility.
Tracking challenge results. In Table 8 we present the re-
sults of the 2019 nuScenes tracking challenge. Stan [16]
use the Mahalanobis distance for matching, significantly
outperforming the strongest baseline (+40% sAMOTA)
and setting a new state-of-the-art on the nuScenes track-
ing benchmark. As expected, the two methods using
only monocular camera images perform poorly (CeVi and
MDIS). Similar to Section 4, we observe that the metrics are
highly correlated, with notable exceptions for MDIS LGD
and CeOp AMOTP. Note that all methods use a tracking-by-
detection approach. With the exception of CeOp and CeVi,
all methods use a Kalman filter [44].
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Figure 17. Per class results for PointPillars on the nuScenes test
set taken from the detection leaderboard.


