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In the supplementary material, we would like to show
more details about the technical approach, implementation,
and experiments.

1. Technical Approach Details
1.1. Domain Attentive Temporal Pooling (DATP)

Temporal pooling is one of the most common methods to
aggregate frame-level features into video-level features for
each video. However, not all the frame-level features con-
tribute the same to the overall domain discrepancy. There-
fore, inspired by [2, 3], we assign larger attention weights to
the features which have larger domain discrepancy so that
we can focus more on aligning those features, achieving
more effective domain adaptation.

More specifically, we utilize the entropy criterion to gen-
erate the domain attention value for each frame-level feature
fj as below:

ŵj = 1−H(d̂j) (1)

where d̂j is the output from the learned domain classifier
Gld used in local SSTDA. H(p) = −

∑
k pk · log(pk) is

the entropy function to measure uncertainty. ŵj increases
when H(d̂j) decreases, which means the domains can be
distinguished well. We also add a residual connection for
more stable optimization. Finally, we aggregate the at-
tended frame-level features with temporal pooling to gen-
erate the video-level feature v, which is noted as Domain
Attentive Temporal Pooling (DATP), as illustrated in the left
part of Figure 1 and can be expressed as:

v =
1

T ′

T ′∑
j=1

(ŵj + 1) · fj (2)

where +1 refers to the residual connection, and ŵj + 1 is
equal to wj in the main paper. T ′ is the number of frames
used to generate a video-level feature.

Local SSTDA is necessary to calculate the attention
weights for DATP. Without this mechanisms, frames will
be aggregated in the same way as temporal pooling without
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Figure 1: The details of DATP (left) and DAE (right). Both
modules take the domain entropy H(d̂), which is calcu-
lated from the domain prediction d̂, to calculate the atten-
tion weights. With the residual connection, DATP attends to
the frame-level features for aggregating into the final video-
level feature v (arrow thickness represents assigned atten-
tion values), and DAE attends to the class entropy H(ŷ) to
obtain the attentive entropy loss Lae.

cross-domain consideration, which is already demonstrated
sub-optimal for cross-domain video tasks [2, 3].

1.2. Domain Attentive Entropy (DAE)

Minimum entropy regularization is a common strategy
to perform more refined classifier adaptation. However, we
only want to minimize class entropy for the frames that are
similar across domains. Therefore, inspired by [14], we
attend to the frames which have low domain discrepancy,
corresponding to high domain entropyH(d̂j). More specif-
ically, we adopt the Domain Attentive Entropy (DAE) mod-
ule to calculate the attentive entropy loss Lae, which can be
expressed as follows:

Lae =
1

T

T∑
j=1

(H(d̂j) + 1) ·H(ŷj) (3)

where d̂ and ŷ is the output of Ĝld and Gy , respectively.
T is the total frame number of a video. We also apply the
residual connection for stability, as shown in the right part
of Figure 1.
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GTEA 50Salads Breakfast
subject # 4 25 52
class # 11 17 48
video # 28 50 1712

avg. length (min.) 1 6.4 2.7
avg. action #/video 20 20 6

cross-validation 4-fold 5-fold 4-fold
leave-#-subject-out 1 5 13

Table 1: The statistics of action segmentation datasets.

1.3. Full Architecture

Our method is built upon the state-of-the-art action seg-
mentation model, MS-TCN [4], which takes input frame-
level feature representations and generates the correspond-
ing output frame-level class predictions by four stages of
SS-TCN. In our implementation, we convert the second and
third stages into Domain Adaptive TCN (DA-TCN) by in-
tegrating each SS-TCN with the following three parts: 1)
Ĝld (for binary domain prediction), 2) DATP and Ĝgd (for
sequential domain prediction), and 3) DAE, bringing three
corresponding loss functions, Lld, Lgd and Lae, respec-
tively, as illustrated in Figure 2. The final loss function can
be formulated as below:

L =

4∑
s=1

Ly(s) −
3∑

s=2

(βlLld(s) + βgLgd(s) − µLae(s)) (4)

where βl, βg and µ are the weights for Lld, Lgd and Lae,
respectively, obtained by the methods described in Sec-
tion 2.2. s is the stage index in MS-TCN.

2. Experiments

2.1. Datasets and Evaluation Metrics

The detailed statistics and the evaluation protocols of the
three datasets are listed in Table 1. We follow [7] to use the
following three metrics for evaluation:

1. Frame-wise accuracy (Acc): Acc is one of the most
typical evaluation metrics for action segmentation, but
it does not consider the temporal dependencies of the
prediction, causing the inconsistency between quali-
tative assessment and frame-wise accuracy. Besides,
long action classes have higher impact on this metric
than shorter action classes, making it not able to reflect
over-segmentation errors.

2. Segmental edit score (Edit): The edit score penalizes
over-segmentation errors by measuring the ordering of
predicted action segments independent of slight tem-
poral shifts.

3. Segmental F1 score at the IoU threshold k% (F1@k):
F1@k also penalizes over-segmentation errors while
ignoring minor temporal shifts between the predictions
and ground truth. The scores are determined by the to-
tal number of actions but do not depend on the dura-
tion of each action instance, which is similar to mean
average precision (mAP) with intersection-over-union
(IoU) overlap criteria. F1@k becomes popular recently
since it better reflects the qualitative results.

2.2. Implementation and Optimization

Our implementation is based on the PyTorch [10, 13]
framework. We extract I3D [1] features for the video frames
and use these features as inputs to our model. The video
frame rates are the same as [4]. For GTEA and Breakfast
datasets we use a video temporal resolution of 15 frames
per second (fps), while for 50Salads we downsampled the
features from 30 fps to 15 fps to be consistent with the other
datasets. For fair comparison, we adopt the same architec-
ture design choices of MS-TCN [4] as our baseline model.
The whole model consists of four stages where each stage
contains ten dilated convolution layers. We set the number
of filters to 64 in all the layers of the model and the filter size
is 3. For optimization, we utilize the Adam optimizer and a
batch size equal to 1, following the official implementation
of MS-TCN [4]. Since the target data size is smaller than
the source data, each target data is loaded randomly multi-
ple times in each epoch during training. For the weighting
of loss functions, we follow the common strategy as [5, 6]
to gradually increase βl and βg from 0 to 1. The weighting
α for smoothness loss is 0.15 as in [4] and µ is chosen as
1× 10−2 via the grid-search.

2.3. Less Training Labeled Data

To investigate the potential to train with a fewer number
of labeled frames using SSTDA, we drop labeled frames
from source domains with uniform sampling for training,
and evaluate on the same length of validation data. Our ex-
periment on the 50Salads dataset shows that by integrating
with SSTDA, the performance does not drop significantly
with the decrease in labeled training data, indicating the al-
leviation of reliance on labeled training data. Finally, only
65% of labeled training data are required to achieve compa-
rable performance with MS-TCN, as shown in Table 2. We
then evaluate the proposed SSTDA on GTEA and Breakfast
with the same percentage of labeled training data, and also
get comparable or better performance.

Table 2 also indicates the results without additional la-
beled training data, which contain discriminative informa-
tion that can directly boost the performance for action seg-
mentation. The additional trained data are all unlabeled, so
they cannot be directly trained with standard prediction loss.
Therefore, we propose SSTDA to exploit unlabeled data to:
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Figure 2: The overall architecture of the proposed SSTDA. By equipping the network with a local adversarial domain
classifier Ĝld, a global adversarial domain classifier Ĝgd, a domain attentive temporal pooling (DATP) module, and a domain
attentive entropy (DAE) module, we convert a SS-TCN into a DA-TCN, and stack multiple SS-TCNs and DA-TCNs to build
the final architecture. Lld and Lgd is the local and global domain loss, respectively. Ly is the prediction loss and Lae is the
attentive entropy loss. The domain entropyH(d̂) is used to calculate the attention weights for DATP and DAE. An adversarial
domain classifier Ĝ refers to a domain classifier G equipped with a gradient reversal layer (GRL).

50Salads m% F1@{10, 25, 50} Edit Acc

SSTDA

100% 83.0 81.5 73.8 75.8 83.2
95% 81.6 80.0 73.1 75.6 83.2
85% 81.0 78.9 70.9 73.8 82.1
75% 78.9 76.5 68.6 71.7 81.1
65% 77.7 75.0 66.2 69.3 80.7

MS-TCN 100% 75.4 73.4 65.2 68.9 82.1
GTEA m% F1@{10, 25, 50} Edit Acc

SSTDA
100% 90.0 89.1 78.0 86.2 79.8
65% 85.2 82.6 69.3 79.6 75.7

MS-TCN 100% 86.5 83.6 71.9 81.3 76.5
Breakfast m% F1@{10, 25, 50} Edit Acc

SSTDA
100% 75.0 69.1 55.2 73.7 70.2
65% 69.3 62.9 49.4 69.0 65.8

MS-TCN 100% 65.3 59.6 47.2 65.7 64.7

Table 2: The comparison of SSTDA trained with less la-
beled training data. m in the first row indicates the percent-
age of labeled training data used to train a model.

1) further improve the strong baseline, MS-TCN, without
additional training labels, and 2) achieve comparable per-
formance with this strong baseline using only 65% of labels

for training.

2.4. Comparison with Other Approaches

We compare our proposed SSTDA with other ap-
proaches by integrating the same baseline architecture with
other popular DA methods [6, 9, 11, 15, 12, 8] and a state-
of-the-art video-based self-supervised approach [16]. For
fair comparison, all the methods are integrated with the sec-
ond and third stages, as our proposed SSTDA, where the
single-stage integration methods are described as follows:

1. DANN [6]: We add one discriminator, which is the
same as Gld, equipped a gradient reversal layer (GRL)
to the final frame-level features f .

2. JAN [9]: We integrate Joint Maximum Mean Discrep-
ancy (JMMD) to the final frame-level features f and
the class prediction ŷ.

3. MADA [11]: Instead of a single discriminator, we add
multiple discriminators according to the class number
to calculate the domain loss for each class. All the
class-based domain losses are weighted with predic-
tion probabilities and then summed up to obtain the
final domain loss.
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50Salads F1@{10, 25, 50} Edit
Source only (MS-TCN) 75.4 73.4 65.2 68.9

VCOP [16] 75.8 73.8 65.9 68.4
DANN [6] 79.2 77.8 70.3 72.0

JAN [9] 80.9 79.4 72.4 73.5
MADA [11] 79.6 77.4 70.0 72.4
MSTN [15] 79.3 77.6 71.5 72.1
MCD [12] 78.2 75.5 67.1 70.8
SWD [8] 78.2 76.2 67.4 71.6
SSTDA 83.0 81.5 73.8 75.8

Breakfast F1@{10, 25, 50} Edit
Source only (MS-TCN) 65.3 59.6 47.2 65.7

VCOP [16] 68.5 62.9 50.1 67.9
DANN [6] 72.8 67.8 55.1 71.7

JAN [9] 70.2 64.7 52.0 70.0
MADA [11] 71.0 65.4 52.8 71.2
MSTN [15] 69.6 63.6 51.5 69.2
MCD [12] 70.4 65.1 52.4 69.7
SWD [8] 68.6 63.2 50.6 69.1
SSTDA 75.0 69.1 55.2 73.7

Table 3: The comparison of different methods that can learn
information from unlabeled target videos (on 50Salads and
Breakfast). All the methods are integrated with the same
baseline model MS-TCN for fair comparison.

4. MSTN [15]: We utilize pseudo-labels to cluster the
data from the source and target domains, and calcu-
late the class centroids for the source and target do-
main separately. Then we compute the semantic loss
by calculating mean squared error (MSE) between the
source and target centroids. The final loss contains the
prediction loss, the semantic loss, and the domain loss
as DANN [6].

5. MCD [12]: We apply another classifier G′y and follow
the adversarial training procedure of Maximum Clas-
sifier Discrepancy to iteratively optimize the genera-
tor (Gf in our case) and the classifier (Gy). The L1-
distance is used as the discrepancy loss.

6. SWD [8]: The framework is similar to MCD, but we
replace the L1-distance with the Wasserstein distance
as the discrepancy loss.

7. VCOP [16]: We divide f into three segments and com-
pute the segment-level features with temporal pooling.
After temporal shuffling the segment-level features,
pairwise features are computed and concatenated into
the final feature representing the video clip order. The
final features are then fed into a shallow classifier to
predict the order.

The experimental results on 50Salads and Breakfast both
indicate that our proposed SSTDA outperforms all these
methods, as shown in Table 3.

The performance of the most recent video-based self-
supervised learning method [16] on 50Salads and Break-
fast also show that temporal shuffling within single domain
without considering the relation across domains does not
effectively benefit cross-domain action segmentation, re-
sulting in even worse performance than other DA methods.
Instead, our proposed self-supervised auxiliary tasks make
predictions on cross-domain data, leading to cross-domain
temporal relation reasoning instead of predicting within-
domain temporal orders, achieving significant improvement
in the performance of our main task, action segmentation.

3. Segmentation Visualization

Here we show more qualitative segmentation results
from all three datasets to compare our methods with the
baseline model, MS-TCN [4]. All the results (Figure 3
for GTEA, Figure 4 for 50Salads, and Figure 5 for Break-
fast) demonstrate that the improvement over the baseline
by only local SSTDA is sometimes limited. For example,
local SSTDA falsely detects the pour action in Figure 3b,
falsely classifies cheese-related actions as cucumber-related
actions in Figure 4b, and falsely detects the stir milk action
in Figure 5b. However, by jointly aligning local and global
temporal dynamics with SSTDA, the model is effectively
adapted to the target domain, reducing the above mentioned
incorrect predictions and achieving better segmentation.
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