AdderNet: Do We Really Need Multiplications in Deep Learning?
(Supplementary Material)

Abstract

In the main body, we propose to replace the sign gra-
dient with full-precision gradient in AdderNets. We then
analyse the convergence of taking these two kinds of gradi-
ent. Moreover, we will discuss the relationship between the
{5-norm AdderNets and CNNs.

1. Convergence of Sign and Full-precision Gra-
dient

AdderNets calculate the ¢; distance between the filter
and the input feature, which can be formulated as
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The partial derivative of Y with respect to the filters F' is:
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where sgn(-) denotes the sign function and the value of the
gradient can only take +1, O, or -1. Since Eq. (2) almost
never takes the direction of steepest descent and the direc-
tion only gets worse as dimensionality grows, we propose
to use the full-precision gradient:
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Proposition 1. Denote an input patch as x € R" and a
filter as f € R™, the optimization problem is:

argmfin |z — f]. 4)
Given a fixed learning rate «, this problem basically cannot

converge to the optimal value using sign grad (Eq. ( 2)) via
gradient descent.

Proof. The optimization problem 4 can be rewritten as:
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arg min Z |z — fil, (5)
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where x = {x1,...,xn}, f = {f1,...
fi using gradient descent is:

, fn}. The update of
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where fij denotes the f; in jth iteration. Without loss of
generality, we assume that f? < z;. So we have:
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when fij < z;. Denote { = argmax; fij < z;, we have
Y s=a W = 2+t + Da = 2 (e
@i fi) f ) — ¢ + 1), |fi — ;| can converge to the optimal
Value 0. However, if f{™' > x;, we have
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Similarly, we have flt +3 = ff'“. Therefore, the inequality

holds:
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which demonstrate that the f; cannot converge and have an
error of x; — f! or x; — ff. The f] can converge to z; if

and only if % € 7, which is a strict constraint since
x;, fi, a € R. Moreover, the f can converge to x if and only
if % € Z for each f; € f. The difficulty of converge
increases when the number n grows. In neural networks, the
dimension of filters is can be very large. Therefore, prob-
lem 4 basically cannot converge to its optimal value. O

The aim of filters is to find the most relevant part of input
features, which meets the goal of Eq. (4). The « (i.e. the
learning rate of neural networks) can be seen as fixed when
using multi-step learning rate, which is widely used in the
training. According to the Proposition 1, if we use the sign
gradient, the AdderNets will achieve a poor performance.

Proposition 2. For the optimization peoblem 4, f can con-
verge to the optimal value using full-precision gradient (Eq.
(3)) with a fixed learning rate o via gradient descent when
a<l



Proof. The optimization problem 4 can be rewritten as:

arg min Y | — fil, (10)
fla-“vfn i=1
where © = {x1,....,xn}, f = {f1,..., fn}. The update of

fi using gradient descent is:
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where fij denotes the f; in jth iteration. If fl-j < m;, then
we have the inequality:
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and fj < fj Without loss of generality, we assume that
12 < z;. Then fJ is monotone and bounded with respect to
4, so the limit of f7 exists and lim;_, o f/ < z;. Assume

that lim; 4 o fi =l < z;. For € = a(x; — [), there exists
k subject to [ — fF < e. Then we have:
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> — e+ alpha(z; — 1) =1,

which is a contradiction. Therefore, lim;_, 4 ij > x;.

Finally, we have lim;_, o, f/ = z;, i.e. f can converge to

the optimal value. O

Therefore, by utilizing the full-precision gradient, the fil-
ters can be updated precisely.

2. Relationship Between /;-norm and Cross-
correlation

In the main body, we propose to use a partial derivative
in AdderNets, which is a clipped version of ¢;-distance.
Therefore, we further discuss using the {s-distance in
AdderNets instead of ¢;-distance. By calculating ¢y dis-
tance between the filter and the input feature, the filters in
{5-AdderNets can be reformulated as
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We also use the adaptive learning rate for the /5-AdderNets,
since the magnitude of the gradient w.r.t X in {5-AdderNets
would also be small. Table 1 shows the classification results
on the ImageNet dataset. The ¢5-AdderNet can achieve al-
most the same accuracy with CNN. In fact, the output of the

Table 1. Classification results on the ImageNet dataset using

ResNet-18 model.
| Method [ #Mul. | #Add. | Top-1Acc. [ Top-5 Acc. |

l2-AddNN | 1.8G 3.6G 69.6% 89.0%
£1-AddNN 0 3.6G 66.8% 87.4%
CNN 1.8G 1.8G 69.8% 89.1%

f5-AdderNets can be calculated as
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Zf 0 Zj o mro F(i,7,k,t)? is same for each channel

(i.e. each fixed t). ZZ OZ] 0wy X(m+i,n+ j,k)?
is the 3-norm of each input patch. If this term is same
for each patch, the output of /5-AdderNet can be seen as a
linear transformation of the output of CNN. Although this
assumption may not always be valid, the result in Table 1
that the performance of ¢5-AdderNet and CNN are similar
indicates that ¢>-distance and cross-correlation have same
ability to extract the information from the inputs.



