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Abstract

In the main body, we propose to replace the sign gra-
dient with full-precision gradient in AdderNets. We then
analyse the convergence of taking these two kinds of gradi-
ent. Moreover, we will discuss the relationship between the
`2-norm AdderNets and CNNs.

1. Convergence of Sign and Full-precision Gra-
dient

AdderNets calculate the `1 distance between the filter
and the input feature, which can be formulated as

Y (m,n, t) = −
d∑

i=0

d∑
j=0

cin∑
k=0

|X(m+ i, n+ j, k)−F (i, j, k, t)|.

(1)
The partial derivative of Y with respect to the filters F is:

∂Y (m,n, t)

∂F (i, j, k, t)
= sgn(X(m+i, n+j, k)−F (i, j, k, t)), (2)

where sgn(·) denotes the sign function and the value of the
gradient can only take +1, 0, or -1. Since Eq. (2) almost
never takes the direction of steepest descent and the direc-
tion only gets worse as dimensionality grows, we propose
to use the full-precision gradient:

∂Y (m,n, t)

∂F (i, j, k, t)
= X(m+ i, n+ j, k)− F (i, j, k, t). (3)

Proposition 1. Denote an input patch as x ∈ Rn and a
filter as f ∈ Rn, the optimization problem is:

argmin
f
|x− f |. (4)

Given a fixed learning rate α, this problem basically cannot
converge to the optimal value using sign grad (Eq. ( 2)) via
gradient descent.

Proof. The optimization problem 4 can be rewritten as:

arg min
f1,...,fn

n∑
i=1

|xi − fi|, (5)

where x = {x1, ..., xn} , f = {f1, ..., fn}. The update of
fi using gradient descent is:

f j+1
i = f ji − αsgn(f ji − xi), (6)

where f ji denotes the fi in jth iteration. Without loss of
generality, we assume that f0i < xi. So we have:

f j+1
i = f ji + α = f j−1i + 2α = ... = f0i + (j + 1)α, (7)

when f ji < xi. Denote t = argmaxj f
j
i < xi, we have

f t+1
i >= xi. If f t+1

i = f0i + (t + 1)α = xi (i.e.
(xi−f0

i )
α = t + 1), |fi − xi| can converge to the optimal

value 0. However, if f t+1
i > xi, we have

f t+2
i = f t+1

i −αsgn(f t+1
i −xi) = f0

i +(t+1)α−α = f t
i (8)

Similarly, we have f t+3
i = f t+1

i . Therefore, the inequality
holds:

f t+2k
i = f ti < xi < f t+2k+1

i , k ∈ N+ (9)

which demonstrate that the fi cannot converge and have an
error of xi − f ti or xi − f ti . The f ji can converge to xi if

and only if (xi−f0
i )

α ∈ Z, which is a strict constraint since
xi, fi, α ∈ R. Moreover, the f can converge to x if and only
if (xi−f0

i )
α ∈ Z for each fi ∈ f . The difficulty of converge

increases when the number n grows. In neural networks, the
dimension of filters is can be very large. Therefore, prob-
lem 4 basically cannot converge to its optimal value.

The aim of filters is to find the most relevant part of input
features, which meets the goal of Eq. (4). The α (i.e. the
learning rate of neural networks) can be seen as fixed when
using multi-step learning rate, which is widely used in the
training. According to the Proposition 1, if we use the sign
gradient, the AdderNets will achieve a poor performance.

Proposition 2. For the optimization peoblem 4, f can con-
verge to the optimal value using full-precision gradient (Eq.
(3)) with a fixed learning rate α via gradient descent when
α < 1.
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Proof. The optimization problem 4 can be rewritten as:

arg min
f1,...,fn

n∑
i=1

|xi − fi|, (10)

where x = {x1, ..., xn} , f = {f1, ..., fn}. The update of
fi using gradient descent is:

f j+1
i = f ji − α(f

j
i − xi), (11)

where f ji denotes the fi in jth iteration. If f ji < xi, then
we have the inequality:

f j+1
i = f ji − α(f

j
i − xi) = (1− α)f ji + αxi < xi, (12)

and f j+1
i < f ji . Without loss of generality, we assume that

f0i < xi. Then f ji is monotone and bounded with respect to
j, so the limit of f ji exists and limj→+∞ f ji ≤ xi. Assume
that limj→+∞ f ji = l < xi. For ε = α(xi − l), there exists
k subject to l − fki < ε. Then we have:

fk+1
i = fki + α(xi − fki ) ≥ fki + α(xi − l)

> l − ε+ alpha(xi − l) = l,
(13)

which is a contradiction. Therefore, limj→+∞ f ji ≥ xi.
Finally, we have limj→+∞ f ji = xi, i.e. f can converge to
the optimal value.

Therefore, by utilizing the full-precision gradient, the fil-
ters can be updated precisely.

2. Relationship Between `2-norm and Cross-
correlation

In the main body, we propose to use a partial derivative
in AdderNets, which is a clipped version of `2-distance.
Therefore, we further discuss using the `2-distance in
AdderNets instead of `1-distance. By calculating `2 dis-
tance between the filter and the input feature, the filters in
`2-AdderNets can be reformulated as

Y (m,n, t) = −
d∑

i=0

d∑
j=0

cin∑
k=0

[
X(m+i, n+j, k)−F (i, j, k, t)

]2
.

(14)
We also use the adaptive learning rate for the `2-AdderNets,
since the magnitude of the gradient w.r.tX in `2-AdderNets
would also be small. Table 1 shows the classification results
on the ImageNet dataset. The `2-AdderNet can achieve al-
most the same accuracy with CNN. In fact, the output of the

Table 1. Classification results on the ImageNet dataset using
ResNet-18 model.

Method #Mul. #Add. Top-1 Acc. Top-5 Acc.
`2-AddNN 1.8G 3.6G 69.6% 89.0%
`1-AddNN 0 3.6G 66.8% 87.4%

CNN 1.8G 1.8G 69.8% 89.1%

`2-AdderNets can be calculated as

Y`2
(m,n, t) =−

d∑
i=0

d∑
j=0

cin∑
k=0

[
X(m+ i, n+ j, k)− F (i, j, k, t)

]2
=

d∑
i=0

d∑
j=0

cin∑
k=0

[
2X(m+ i, n+ j, k)× F (i, j, k, t)

−X(m+ i, n+ j, k)
2 − F (i, j, k, t)

2]
=2YCNN (m,n, t)−

d∑
i=0

d∑
j=0

cin∑
k=0

[
X(m+ i, n+ j, k)

2

+ F (i, j, k, t)
2]
.

(15)∑d
i=0

∑d
j=0

∑cin
k=0 F (i, j, k, t)

2 is same for each channel

(i.e. each fixed t).
∑d
i=0

∑d
j=0

∑cin
k=0X(m+ i, n+ j, k)2

is the `2-norm of each input patch. If this term is same
for each patch, the output of `2-AdderNet can be seen as a
linear transformation of the output of CNN. Although this
assumption may not always be valid, the result in Table 1
that the performance of `2-AdderNet and CNN are similar
indicates that `2-distance and cross-correlation have same
ability to extract the information from the inputs.


