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1. Implementation Details of AD
We provide the implementation details of the gradient-based adversarial method (AD) [3]. As illustrated in Fig. 1(a),

given an image im, AD requires a trained classifier C(·) and a known label lb, to generate the adversarial dithering ε from the
back-propagation C ′(·) of cross-entropy loss Lce. The output im′ is the summation between im and ε. Since the generation
of ε requires a known label, AD cannot generalize to images with unseen camera types, as described in Section 4.3 of the
main text. For more details, we adopt a ResNet trained on KCMI+ as the embodiment of C(·).

Moreover, for a full size image (with high resolution), AD should conduct the adversarial process patch by patch, as shown
in Fig. 1(b), since C(·) usually has a size limit to its input (e.g., 224 × 224 for the ResNet structure [4]). After adding the
adversarial dithering, we gather the processed patches to obtain the full size output. Then, we randomly crop 4 patches from
the full size output for evaluation, as described in Section 4.2 of the main text. We illustrate two of the randomly cropped
patches im∗ in Fig. 1(c) (colored in red) for a better understanding.
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Figure 1. Implementation details of the gradient-based adversarial method [3] in the classification task.

2. Supplementary Visual Results
We provide supplementary visual results on KCMI-550 and VISION-1500.
As shown in Fig. 2, our proposed method has no visible destruction of content signal, such as the text on a yellow cab and

the bright spots on a taillight. In comparison, MF, GF, and DN-E [2] blur the content signal in different degrees. While CP
introduces the blocking artifact and degrades the visual quality.

As shown in Fig. 3, our proposed method effectively erases camera trace in the brown smooth area, without the visible
destruction to the Roman numerals and patterns on a clock. In comparison, MF smooths out camera trace as well as a part of
content signal. While DN-I [6] removes the visible noise, the residual camera trace in processed images is more than ours,
which is demonstrated by the worse anti-forensic performance listed in the main text. As for DB [7], it has little response to
the other part of camera trace except for the blocking artifact, which makes it difficult to handle the complex camera trace,
as the brown smooth area shown in Fig. 3. Such a characteristic is also reflected by the small L1 distance (i.e., the degree of
manipulation) listed in the main text.
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(a) ORI (b) MF5 (c) GF5

(d) CP30 (e) AD2 (f) DB

(g) DN-I (h) DN-E (i) Ours

Figure 2. Visual comparison on an image from KMCI-550.



(a) ORI (b) MF3 (c) MF5

(d) GF5 (e) CP30 (f) DB

(g) DN-I (h) DN-E (i) Ours

Figure 3. Visual comparison on an image from VISION-1500.



3. Camera Types and Thumbnails of Datasets
We list the camera types of KCMI [1] and VISION [5] in Tables 1 and 2, respectively. Thumbnail images are provided in

Figs. 4 and 5.

Table 1. Definitions of serial numbers for camera types in KCMI

Number 1 2 3 4 5 6 7 8 9 10

Camera HTC1 LG5X MotoMax MotoNex6 MotoX GalaxyN3 GalaxyS4 SonyNex7 iPhone4S iPhone6

Table 2. Camera (sensor) types in VISION

GT-I8190N iPhone4S * EVA-L09 LG-D290 iPhone5C iPhone6 * Lenovo P70A GT-P5210 iPhone4 GT-I9300

D5503 GT-S7580 VNS-L31 Lumia640 Redmi Note3 iPad Mini RIDGE 4G OnePlus A3003 ASUS-Z iPhone6P

iPhone5 SM-G900F GT-I8190 GRA-L09 GT-I9195 NEM-L51 OnePlus A3000 SM-T555 G6-U10 iPad2

* These two camera types also exist in KCMI-550 (i.e., No. 9 and 10).

Figure 4. A part of thumbnail images from VISION-1500.



Figure 5. A part of thumbnail images from KCMI-550.
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