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A. Overview
This document provides more details of our G2L-Net.

Section B describes how we train our G2L-Net. Section
C compares another state-of-the-art method [4] with ours.
Finally, we attach a demo video, which suggests the effec-
tiveness of the G2L-Net in real scene.

B. Training details
In training stage, the architecture is different from that of

inference stage, since we do not deploy block C (in Figure
A) in inference stage.

The training stage consists of two steps. In the first step,
we fine-tune the 2D detector, i.e. YOLO-V3 [3] on the Im-
ageNet [1] to locate the 2D region of interest and access the
class probability map.

In the second step, we jointly train the translation and
rotation localization networks. The translation localization
network performs two related tasks: 3D segmentation and
translation residual estimation. For 3D segmentation, we
employ cross-entropy loss Lseg . For translation residual es-
timation, the loss function is defined as:

Ltran =

∑3
i=1 (xi − x̃i)

2

3
, (1)

where xi is the coordinate of the ground truth, xpi is the
estimated translation residual.

The rotation localization network consists of three
blocks: A, B, and C (as shown in Figure A). The loss func-
tion of block A is defined as the mean square error between
the predicted and ground truth directional vectors:

LA = min
θ

1

K |P|

K∑
k=1

∑
i

‖ṽk(Pi;θ)− vk(Pi)‖22 , (2)

where K is the number of 3D keypoints. θ is the network
parameters. ṽk(Pi;θ) and vk(Pi) are the predicted vector
and the ground truth vector, respectively. P ∈ Rn×3 de-
notes the object points in the camera space. |P| denotes the
number of object points.

For block B and C, we use the modified corner loss pro-
posed in [2]:

LB,C =
1

8

8∑
k=1

∥∥∥Pk − P̃k

∥∥∥2 , (3)

where Pk and P̃k are ground truth and prediction of the kth
keypoint, respectively.

The ground truth P is generated by the pre-defined 3D
bounding box and the ground truth pose in block B. How-
ever, the ground truth of block C is the residual between
ground truth of block B and the prediction of block B.

We combine all the losses together to simultaneously op-
timize all networks:

L = Ltran + λ1Lseg + λ2LA + λ3LB + λ4LC , (4)

where λi = {0.01, 1, 0.001, 0.001}.

C. Comparison with state-of-the-art
We compare our method with another state-of-the-art

method, Densefusion [4], which also used point cloud for
6D object pose estimation. Densefusion estimated the 6D
object pose from point clouds and RGB information in a
global space. However, we estimate the 6D pose from point
clouds in a local space. Figure B suggests that our method
is more robust to viewpoints changes, and can handle some
failure cases of Densefusion.
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Figure A. Training architecture of G2L-Net. In training stage, we have three different blocks of rotation localization network, which is
different from the inference architecture.

Figure B. Visualization comparison. The top row lists some failure cases of the state-of-the-art method Densefusion [4]. The bottom
row presents the corresponding detection results of our G2L-Net. For all images, the white bounding boxes are the ground truth, while the
blue bounding boxes are prediction results.
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