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APbv IoU≥0.5 AP3D IoU≥0.5 APbv IoU≥0.7 AP3D IoU≥0.7
Methods E M H E M H E M H E M H

Mono3D [2] 30.50 22.34 19.16 25.19 18.20 15.52 5.22 5.19 4.13 2.53 2.31 2.31
OFTNet [6] - - - - - - 11.06 8.79 8.91 4.07 3.27 3.29
MF3D [8] 55.02 36.73 31.27 47.88 29.48 26.44 22.03 13.63 11.60 10.53 5.69 5.39

MonoPSR [3] 56.97 43.39 36.00 49.65 41.71 29.95 20.63 18.67 14.45 12.75 11.48 8.59
TLNet(mono) [5] 52.72 37.22 32.16 48.34 33.98 28.67 21.91 15.72 14.32 13.77 9.72 9.29
MonoGRNet [4] 54.21 39.69 33.06 50.51 36.97 30.82 24.97 19.44 16.30 13.88 10.19 7.62

MonoDIS [7] - - - - - - 24.26 18.43 16.95 18.05 14.98 13.42
M3D-RPN [1] 55.37 42.49 35.29 48.96 39.57 33.01 25.94 21.18 17.90 20.27 17.06 15.21

Baseline 54.50 40.87 34.45 48.22 36.80 31.97 25.69 18.97 16.48 14.69 10.27 9.06
+σz + σuv 58.49 48.57 43.20 54.68 42.43 40.17 26.22 21.09 19.78 19.27 16.57 14.50
MonoPair 59.66 49.52 43.76 55.88 43.32 40.94 28.97 22.65 21.10 22.26 18.42 16.49

Table 1: AP11 scores on KITTI3D validation set for car. E, M and H represent Easy, Moderate and Hard samples.

1. Additional Validation Results through AP11

As mentioned in the main paper, previous methods
mainly conduct evaluation experiments through the old
metric AP11 on KITTI3D benchmark. Thus, To com-
pare our method with more monocular 3D object detec-
tors, we also show results on the KITTI3D validation set
through AP11 as shown in Table 1. Our Baseline, as men-
tioned in the main paper, is mainly derived from Center-
Net [9], which is designed specifically for 2D object de-
tection. It can not catch a similar performance as state-of-
the-art monocular 3D object detectors. However, with the
proposed uncertainty-aware spatial constraint optimization,
our MonoPair finally outperforms all of the other methods
with a large margin.

2. Additional Qualitative Results

We also present additional qualitative results on KITTI
validation set as shown in Figure 1-4. We choose four dif-
ferent scenarios (block, town road, highway and city cen-
ter), where two samples are selected from each of the sce-
narios. Predictions from MonoGRNet [4] and M3D-RPN

[1], and our MonoPair are presented in each figure from top
to down. Blue boxes mean predictions from cars. Yellow
and gray boxes are predictions of pedestrians and cyclists
respectively. The cross shows the predicted orientation of
the 3D object. More results are also uploaded in the supple-
mentary directory.

Compared with results from other detectors as shown in
these figures, MonoPair shows a great ability to detect se-
riously occluded samples. It also provides a considerable
bounding box for samples far away from the camera. How-
ever, MonoGRBet [4] and M3D-RPN [1] always neglect
those occluded or further samples. Besides, MonoPair also
provides much better orientation predictions as shown in all
the figures. Figure 4 is mainly to show the detection ability
for pedestrians and cyclists, which are trained from much
fewer samples compared with cars. The proposed spatial
constraint from the same category provides more informa-
tion for training and shows much accurate predictions.
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Figure 1: Predictions on two block scenarios from the KITTI validation set. Results are from MonoGRNet [4], M3D-RPN
[1], and our MonoPair from top to down in both (a) and (b).
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Figure 2: Predictions on two town road scenarios from the KITTI validation set. Results are from MonoGRNet [4], M3D-
RPN [1], and our MonoPair from top to down in both (a) and (b).
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Figure 3: Predictions on two highway scenarios from the KITTI validation set. Results are from MonoGRNet [4], M3D-RPN
[1], and our MonoPair from top to down in both (a) and (b).
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Figure 4: Predictions on two city center scenarios especially for pedestrians and cyclists from the KITTI validation set.
Results are from MonoGRNet [4], M3D-RPN [1], and our MonoPair from top to down in both (a) and (b).
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