
A. Appdendix
A.1. Introduction of state-of-the-art models

CycleGAN uses an adversarial loss to learn the mapping
between two different domains. The method regularizes the
mapping through cycle-consistency losses, using two down-
sampling convolution blocks, nine residual blocks, two
up-sampling deconvolution blocks and four discriminator
layers. Codes are on https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix.

UNIT consists of two VAE-GAN with shared latent
space. The structure of the UNIT is similar to Cycle-
GAN, but different from CycleGAN in that it uses multi-
scale discriminators and shares the weight of the high-level
layer stage of the encoder and decoder. Codes are on
https://github.com/mingyuliutw/UNIT.

MUNIT can generate various outputs for a single input
image. MUNIT assumes that the image representation can
be decomposed into a content code and a style code. The
main difference between MUNIT’s network structure and
other networks is that it uses AdaIN in the decoder and also
a multi-scale discriminator. We generate N = 1 images for
each input image in the test set. We use the generated sam-
ples and all samples in test set to compute FID and KID.
Codes are on https://github.com/NVlabs/MUNIT.

DRIT can also create different outputs for a single input
image similar to MUNIT. It decomposes the image into a
content code and a style code, using a multi-scale discrimi-
nator. The difference between DRIT and MUNIT is that the
content code is shared like UNIT. We generate N = 1 images
for each input image in the test set. We use the generated
samples and all samples in test set to compute FID and KID.
Codes are on https://github.com/HsinYingLee/DRIT.

U-GAT-IT is a recent work associated with unsuper-
vised image-to-image translation, which incorporates a
CAM (Class Activation Map) module and an AdaLIN
(Adaptive Layer-Instance Normalization) function in an
end-to-end manner. U-GAT-IT can translate images requir-
ing holistic changes or large shape changes. Light version
is applied due to the limited memory of our gpu. Codes are
on https://github.com/znxlwm/UGATIT-pytorch.

A.2. Network Architecture

The architectures of the discriminator and generator in
NICE-GAN are shown in Table 1 and 2, respectively. For
the generator network, we use adaptive layer-instance nor-
malization in decoders except the last output layer. For the
discriminator network, Leaky-ReLU is applied with a neg-
ative slope of 0.2 and spectral normalization is put in all
layers. We apply softmax instead of clip to limit ρ ∈ [0, 1]
in AdaLIN. Besides, we concat global average & max pool-
ing’s feature maps before Classifier0 so that the input chan-
nel of MLP-(N1) is 256. More details are presented in our

source code. There are some notations: N is the number of
output channels; K is the kernel size; S is the side size; P is
the padding size; AdaLIN is the adaptive layer-instance nor-
malization; LIN is layer-instance normalization; SN is the
spectral normalization; RA is adding residual connection in
CAM attention module.

A.3. Additional results

A.3.1 Discussing γ

As for Residual Attention (RA) module, the parameter γ
is task-specific (as illustrated in table 3). Regarding tasks
like photo→ vangogh and summer→ winter, γ is close to 0
indicating more attention is paid to global features, which is
reasonable as translating the whole content of the images in
these tasks is more necessary than focusing on local details.

A.3.2 More analysis on the multi-scale discriminator.

Table 4 evaluates the impact of (C0
x, C

1
x, C

2
x) on various

datasets. For the cat ↔ dog task, global characteristics of
the semantic of objects is of much importance. For the col-
orization and stylization task(e.g. summer↔ winter, photo
↔ vangogh), preserving middle and local scale still deliv-
ers promising performance. Specifically, if removing the
local scale, FID increases significantly from 66 to 90 on
horse→zebra; and from 76/76 to 88/96 on summer↔winter
if leaving out the medium scale. It implies all three scales
are generally necessary.

A.3.3 More visualizations of hidden vectors.

The training process is proceeded in terms of three kinds
of losses: adversarial loss, identity reconstruction loss, and
cycle-consistency loss. The adversarial loss is to pursue
domain transfer, while both reconstruction loss and cycle-
consistency loss are for tackling the non-identifiability is-
sue. As shown in Figure 1, our method enables meaningful
hidden interpolations since the shared-latent space assump-
tion are enforced by NICE framework and three kinds of
losses in our training.

Figure 2 visualizes more heat-maps of the hidden vec-
tors. Generally, the heat-maps by the model with NICE
show more concise and distinguishable semantics encoding
than that without NICE (namely an independent encoder is
used). It shows using NICE captures the texture and local
parts of the object more clearly, exhibiting the superiority
of NICE-GAN.

A.3.4 Additional comparisons with state of the arts

Due to the lack of standard protocol so far, our exper-
iments use released codes to train all baselines over the

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/mingyuliutw/UNIT
https://github.com/NVlabs/MUNIT
https://github.com/HsinYingLee/DRIT
https://github.com/znxlwm/UGATIT-pytorch

Table 1: Discriminator network architecture

Component Input→ Output Shape Layer Information

Encoder (h,w, 3)→ (h2 ,
w
2 , 64) CONV-(N64, K4, S2, P1), SN, Leaky-ReLU

Down-sampling0 (h2 ,
w
2 , 64)→ (h4 ,

w
4 , 128) CONV-(N128, K4, S2, P1), SN, Leaky-ReLU

RA of
(h4 ,

w
4 , 128)→ (h4 ,

w
4 , 256)

Global Average & Max Pooling,
Encoder& MLP-(N1), Multiply the weights of MLP
Classifier0 (h4 ,

w
4 , 256)→ (h4 ,

w
4 , 128) CONV-(N128, K1, S1), RA, Leaky-ReLU

Down-sampling1 (h4 ,
w
4 , 128)→ (h8 ,

w
8 , 256) CONV-(N256, K4, S2, P1), SN, Leaky-ReLU

Classifier1 (h8 ,
w
8 , 256)→ (h8 − 1, w8 − 1, 512) CONV-(N512, K4, S1, P1), SN, Leaky-ReLU

(h8 − 1, w8 − 1, 512)→ (h8 − 2, w8 − 2, 1) CONV-(N1, K4, S1, P1), SN

Down-sampling2 (h8 ,
w
8 , 256)→ (h

16 ,
w
16 , 512) CONV-(N512, K4, S2, P1), SN, Leaky-ReLU

(h
16 ,

w
16 , 512)→ (h

32 ,
w
32 , 1024) CONV-(N1024, K4, S2, P1), SN, Leaky-ReLU

Classifier2 (h
32 ,

w
32 , 1024)→ (h

32 − 1, w
32 − 1, 2048) CONV-(N2048, K4, S1, P1), SN, Leaky-ReLU

(h
32 − 1, w

32 − 1, 2048)→ (h
32 − 2, w

32 − 2, 1) CONV-(N1, K4, S1, P1), SN

Table 2: Generator network architecture

Component Input→ Output Shape Layer Information

Sampling (h4 ,
w
4 , 128)→ (h4 ,

w
4 , 256) CONV-(N256, K3, S1, P1), LIN, ReLU

γAdaLIN , βAdaLIN

(h4 ,
w
4 , 256)→ (1, 1, 256) Global Average Pooling

(1, 1, 256)→ (1, 1, 256) MLP-(N256), ReLU
(1, 1, 256)→ (1, 1, 256) MLP-(N256), ReLU
(1, 1, 256)→ (1, 1, 256) MLP-(N256), ReLU

Bottleneck

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

(h4 ,
w
4 , 256)→ (h4 ,

w
4 , 256) AdaResBlock-(N256, K3, S1, P1), AdaLIN, ReLU

Up-sampling
(h4 ,

w
4 , 256)→ (h2 ,

w
2 , 128) Sub-pixel-CONV-(N128, K3, S1, P1), LIN, ReLU

(h2 ,
w
2 , 128)→ (h,w, 64) Sub-pixel-CONV-(N64, K3, S1, P1), LIN, ReLU

(h,w, 64)→ (h,w, 3) CONV-(N3, K7, S1, P3), Tanh

same iterations for fair comparison. Table 5 shows addi-
tional comparisons with state of the arts in 200K-th itera-
tions. Still, NICE-GAN (trained for more iterations) gener-
ally performs superiorly.

A.3.5 More visualizations of translated images.

In addition to the results presented in the paper, we show
more generated images for the four datasets in Figure 3, 4,
5, 6, 7, 8, 9 and 10.

Table 3: RA Analysis. a(x) = γwEx(x) + Ex(x), where the trainable parameter γ determines the trade-off between the
attended features and the original ones. When γ = 0, it returns to Ex(x) indicating no attention is used, and otherwise, the
attention is activated.

Object dog winter photo zebra
γ -0.2492 0.2588 -0.0006 -0.2699
Object cat summer vangogh horse
γ 0.3023 0.0006 0.3301 0.2723

Table 4: Multi-Scale Analysis. For both FID and KID, lower is better. Results of methods are all in 100K iterations of
discriminator.

Method
Dataset dog2cat winter2summer photo2vangogh zebra2horse

FID KID × 100 FID KID × 100 FID KID × 100 FID KID × 100
C0

x 216.03 18.57 81.12 1.50 135.17 3.92 215.79 12.79
C0

x, C1
x 203.56 15.27 77.52 1.14 121.47 2.86 193.11 10.37

C0
x, C1

x, C2
x 48.79 1.58 76.44 1.22 122.27 3.71 149.48 4.29

C1
x, C1

x 45.46 0.85 77.50 1.17 131.38 5.38 147.24 3.92
C0

x, C2
x 54.31 2.20 88.02 2.45 130.73 4.87 154.13 5.43

Method
Dataset cat2dog summer2winter vangogh2photo horse2zebra

FID KID × 100 FID KID × 100 FID KID × 100 FID KID × 100
C0

x 231.24 22.12 76.88 0.63 155.50 7.40 168.57 10.74
C0

x, C1
x 238.62 21.41 77.10 0.67 132.08 4.67 104.46 4.60

C0
x, C1

x, C2
x 44.67 1.20 76.03 0.67 112.00 2.79 65.93 2.09

C1
x, C1

x 53.94 1.95 79.91 1.11 128.47 4.87 90.00 3.77
C0

x, C2
x 65.99 2.62 96.26 2.08 123.05 4.32 80.50 2.85

Figure 1: Translation results with linear-interpolated hidden vectors between two domains. GeneratedX: images of
Domain X generated from the hidden vectors; GeneratedY: images of Domain Y generated from the hidden vectors. Results
show that the hidden vectors share latent space since it successfully generates reasonable image from linear-interpolated
hidden vectors between two domains.

Figure 2: The heat-map visualizations of the hidden vectors.

Table 5: The FID and the KID ×100 for different algorithms. Lower is better. All of the methods are trained to the 200K-th
iterations.

Method
Dataset dog→ cat winter→ summer photo→ vangogh zebra→ horse

FID KID × 100 FID KID × 100 FID KID × 100 FID KID × 100
NICE-GAN 42.22 0.73 77.51 1.37 126.29 4.35 138.77 3.26
U-GAT-IT-light 63.85 2.08 72.58 1.99 120.92 3.68 150.34 3.64
CycleGAN 93.72 3.46 77.01 1.07 115.74 2.90 140.65 3.64
UNIT 53.18 1.36 95.76 4.59 135.37 5.03 174.65 6.36
MUNIT 48.52 1.21 99.14 4.36 132.22 4.75 190.06 6.32
DRIT 63.13 2.75 83.30 2.03 126.11 4.28 164.92 6.78

Method
Dataset cat→ dog summer→ winter vangogh→ photo horse→ zebra

FID KID × 100 FID KID × 100 FID KID × 100 FID KID × 100
NICE-GAN 34.71 0.61 78.87 0.78 107.53 2.99 75.64 1.77
U-GAT-IT-light 69.43 2.48 84.16 1.16 110.03 3.54 85.66 2.78
CycleGAN 103.95 5.41 78.39 0.82 117.88 3.08 68.11 1.52
UNIT 42.32 0.90 111.14 5.34 125.85 5.97 118.98 6.34
MUNIT 45.17 1.14 110.91 4.90 131.25 6.01 104.72 5.26
DRIT 53.19 1.73 81.64 1.10 111.46 3.76 92.26 4.58

Figure 3: Examples of cat→ dog translation images. As is shown in these examples, images generated by NICE-GAN,
UNIT and MUNIT have better quality.

Figure 4: Examples of dog → cat translation images. Most images are optimistic except those generated by CycleGAN
and DRIT.

Figure 5: Examples of horse→ zebra translation images. The translation images shows that NICE-GAN has better ability
in adding textures except for subtle color differences during the translation process.

Figure 6: Examples of zebra→ horse translation images. As is shown in the examples, images generated by U-GAT-IT
gain the best results. The disadvantage of NICE-GAN still lies in subtle color differences.

Figure 7: Examples of summer→ winter translation images. Images generated by different methods gain relatively ideal
and realistic results.

Figure 8: Examples of winter→ summer translation images. Images generated by different methods look optimistic except
for images generated by CycleGAN and UNIT.

Figure 9: Examples of vangogh→ photo translation images. The translation of vangogh→ photo is a difficult task, most
methods could barely finish the task.

Figure 10: Examples of photo→ vangogh translation images. Images generated by different methods gain relatively ideal
results except for DRIT.

