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Overview
In this Supplementary Material, we evaluate the uncer-

tainty estimation with additional experiments, show the
sub-networks of our network architecture in detail, and
demonstrate our final point cloud reconstruction results of
the DTU testing set and the Tanks and Temple dataset.

1. Additional experiments of uncertainty esti-
mation.

In this section, we discuss additional experiments and
analysis about our uncertainty estimation evaluated on the
DTU validate set.

Histogram of the uncertainty interval lengths in the 1st ATV

Histogram of the uncertainty interval lengths in the 2nd ATV
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Figure 1: Histograms of the uncertainty interval lengths.
We create bins for every 0.5mm to compute the histograms
of the lengths of the uncertainty intervals in the two ATVs.
We mark the median and the mean values of the lengths in
the histograms.

We have shown the average lengths of the uncertainty
intervals and the corresponding average sampling distances

* Equal contribution.

Layer Stride Kernel Channel Input

conv_unit0_0 1x1 3x3 3->8 rgb

conv_unit0_1 1x1 3x3 8->8 conv_unit0_0

conv_unit1_0 2x2 5x5 8->16 conv_unit0_1

conv_unit1_1 1x1 3x3 16->16 conv_unit1_0

conv_unit1_2 1x1 3x3 16->16 conv_unit1_1

conv_unit2_0 2x2 5x5 16->32 conv_unit1_2

conv_unit2_1 1x1 3x3 32->32 conv_unit2_0

conv_unit2_2 1x1 3x3 32->32 conv_unit2_1

conv_out1 1x1 1x1 32->32 conv_unit2_2

deconv_unit1_0 2x2 3x3 32->16 conv_unit2_2

concat1 - - - deconv_unit1_0, 
conv_unit1_2

conv_unit3_0 1x1 3x3 32->16 concat1

conv_out2 1x1 1x1 16->16 conv_unit3_0

deconv_unit2_0 2x2 3x3 16->8 conv_unit3_0

concat2 - - - deconv_unit2_0, 
conv_unit0_1

conv_unit4_0 1x1 3x3 16->8 concat2

conv_out3 1x1 1x1 8->8 conv_unit4_0

Table 1: The U-Net architecture of our multi-scale fea-
ture extractor. We show the detailed convolutional units
of our multi-scale feature extractor; each convolutional unit
is composed by a 2D convolution layer, a BN (batch nor-
malization) layer and a ReLU layer. The colored cells
(conv out1, conv out2, conv out3) apply only a single 2D
convolution layer to provide multi-scale features for cost
volume construction.

between the depth planes of the ATVs in Tab. 3 of the main
paper. We now show the histograms of the uncertainty inter-
val length in Fig. 1 to better illustrate the distributions of the
interval length. We also mark the average lengths and the
median lengths in the histograms. Note that, the distribu-
tions of the two ATVs are unimodal, in which most lengths
distribute around the peaks; however, the average interval
lengths differ much from the modes in the histograms, be-
cause of small portions of the intervals that have very large
uncertainty. This means that using the average interval
lengths – as what we do for Tab. 3 in the main paper – to dis-



Layer Stride Kernel Channel Input

conv_unit0 1x1x1 3x3x3 8->8 cost volume

conv_unit1 2x2x2 3x3x3 8->16 conv_unit0

conv_unit2 1x1x1 3x3x3 16->16 conv_unit1

conv_unit3 2x2x2 3x3x3 16->32 conv_unit2

conv_unit4 1x1x1 3x3x3 32->32 conv_unit3

conv_unit5 2x2x2 3x3x3 32->64 conv_unit4

conv_unit6 1x1x1 3x3x3 64->64 conv_unit5

deconv_unit7 2x2x2 3x3x3 64->32 conv_unit6

deconv_unit8 2x2x2 3x3x3 32->16 conv_unit4 + 
deconv_unit7

deconv_unit9 2x2x2 3x3x3 16->8 conv_unit2 + 
deconv_unit8

conv_out 1x1x1 3x3x3 8->1 conv_unit0 + 
deconv_unit9

Table 2: The network architecture of the 3D U-Net. We
show the 3D U-Net architecture that is used to process
the cost volume and predict the depth probabilities at each
stage. Similarly, each convolutional unit is composed by a
3D convolution layer, a BN (batch normalization) layer and
a ReLU layer. The colored cell (conv out) apply only a sin-
gle 3D convolution layer. We apply soft-max on the final
one-channel output over depth planes to compute the final
depth probability maps.

cuss the depth-wise sampling is in fact underestimating the
sampling efficiency we have achieved for most of the pix-
els, though our average lengths are good and correspond to
a high sampling rate. Therefore, we additionally show the
median values in the histograms, which are less sensitive to
the large-value outliers and are more representative than the
mean values for these distributions. As shown in Fig. 1, the
median interval lengths of the two ATVs are 12.01mm and
2.71mm respectively, which are closer to the peaks of the
histograms; these lengths correspond to depth-wise sam-
pling distances of 0.38mm and 0.34mm, given our speci-
fied 32 and 8 depth planes. These are significantly higher
sampling rates than previous works, such as MVSNet [3]
– which uses 256 planes to obtain a sampling distance of
1.99mm – and RMVSNet [4] – which uses 512 planes to
obtain a sampling distance of 0.99mm. Our ATV allows for
highly efficient spatial partitioning, which achieves a high
sampling rate with a small number of depth planes.

To illustrate how the per-pixel uncertainty estimates vary
in a predicted depth map, we show the pixel-wise differ-
ence between the ground truth depth and the boundaries of
the uncertainty intervals in Fig. 2. We can see that, while
our estimated uncertainty intervals have small lengths (as
shown in Fig. 1), the uncertainty estimation is very reliable,
reflected by the fact that most intervals are covering the
ground truth depth in both ATVs (the red and white colors in
the right two columns of Fig. 2) . This verifies the high av-
erage covering ratios of 94.7% and 85.2% of the two ATVs,
which we have shown in Tab. 3 of the main paper. We also

observe more white colors in the 3rd-stage ATV than those
in the 2nd-stage ATV, which reflects that the uncertainty is
well reduced after a stage and the prediction becomes more
precise. Note that, while our method may predict incorrect
intervals (blue colors in the right two columns of Fig. 2) that
fail to cover the ground truth for some pixels, those pixels
are mostly around the shape boundaries, oblique surfaces
and highly textureless regions, which are known to be chal-
lenging and still open problems for depth estimation. On
the other hand, our method predicts large uncertainty for
these challenging pixels, which is as we expect and reflects
the inaccuracies in the predictions.

2. Network architecture.
We have shown the overview of our network in Fig. 2

of the main paper and discussed our network in Sec. 3 of
the paper. Our network consists of a 2D U-Net for feature
extraction and three 3D U-Nets with the same architecture
for cost volume processing. We show the details of the 2D
U-Net in Tab. 1, which is used for our multi-scale feature
extractor (see Sec. 3.1 of the paper); we also show the de-
tails of our 3D U-Net in Tab. 2 which is used to process the
cost volume at each stage (see Sec. 3.3 of the paper).

3. Point cloud reconstruction.
We show our final point cloud reconstruction results of

the DTU testing set [1] in Fig. 3 and Fig. 4, and the results
of the Tanks and Temple dataset [2] in Fig. 5. Please refer to
Tab. 1 and Tab. 2 in the main paper for quantitative results
on these datasets.
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Figure 2: Uncertainty in depth predictions. We show three examples from the DTU validate set regarding the depth predic-
tions and their pixel-wise uncertainty estimates. In each example, we show the reference RGB image, the ground truth depth,
the depth prediction and a corresponding error map; we also illustrate the uncertainty intervals by showing the difference
between the ground truth depth and the interval boundaries (lower bound and upper bound). Note that, in the right two
columns, the white colors represent small intervals with low uncertainty, the red colors represent large intervals with large
uncertainty, and the blue colors correspond to the intervals that fail to cover the ground truth.



Figure 3: Point cloud reconstruction on the DTU test set.

Figure 4: Point cloud reconstruction on the DTU test set.



Figure 5: Point cloud reconstruction on the Tanks and Temple dataset.


