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In the following, we provide details for our main pa-
per [1] regarding the hyperparameters used in experiments
and illustrate the continuous feature extraction used during
shape decoding (Sec. 1). Further, we explain the water-
proofing method we have used to create our Humans dataset
(Sec. 2). Finally, we show further results for the Single-View
Human Reconstruction experiment (Sec. 3). Here we addi-
tionally demonstrate the performance of our method for dy-
namic sequence reconstruction on a frame-by-frame basis.

1. Implementation Details

Hyperparameters. Next, the hyperparameters for the
main paper experiments are given. Please refer to Section 3
of the main paper for a detailed description of the symbols.
The number of all point samples with their ground truth oc-
cupancy is S = 100.000 in all experiments. During train-
ing, sub-samples of size R = 50.000 are used. For optimiz-
ing the loss LB(w) in Equation 5, we use the Adam opti-
mizer with parameters lr = 1e − 4, betas = (0.9, 0.999),
eps = 1e − 8, weight decay = 0 in all experiments. The
first feature grid F1 has a resolution of N = 32 for super-
resolution from 323 voxels, N = 128 for super-resolution
from 1283 voxels, N = 128 for point cloud reconstruction
from Shapenet, and N = 256 for single-view reconstruc-
tion. The decoder f() consists of 3 fully connected layers
for the human voxel experiments and of 4 fully connected
layers for all other experiments. For sampling ground truth
points in the vicinity of the surface, we used σ1 = 0.01,
σ2 = 0.15 for ShapeNet reconstruction from 3000 points
and σ1 = 0.01, σ2 = 0.1 for the other ShapeNet experi-
ments, σ1 = 0.015, σ2 = 0.15 for human super-resolution
and σ1 = 0.015, σ2 = 0.2 for single-view reconstruction.
For feature extraction along the XYZ axes, we used a dis-
tance of d = 0.035 for ShapeNet 323 voxels and d = 0.072
in all other experiments. We used n = 4 feature grids for

323 Humans and ShapeNet voxels, n = 5 for 1283 Humans
voxels, n = 6 for ShapeNet with 1283 and 3000 points and
n = 7 for single-view reconstruction. Code is available at
https://virtualhumans.mpi-inf.mpg.de/ifnets/.

Continuous Feature Extraction. Next we further illus-
trate Eq. 3 of the main paper. To this end, we briefly recap
the shape decoding of IF-Nets (cf. Section 3.2 main paper):
Given an input shape X the encoder g produces the shape
encoding g(X) = F1, ..,Fn. The decoding is done in a
point wise fashion, that is, given a query point p ∈ R3 and
the encoding, the task of the decoder is to classify the point
as inside or outside of the shape. To this end, the decoder f
is fed with local and global features extracted from the en-
coding F1, ..,Fn at point p. In order to encode information
of the local neighborhood into the point encoding, even at
early grids with small receptive fields (e.g. F1), we extract
features at a query point’s location p itself and additionally
at surrounding points in a distance d along the Cartesian
axes:

{p+ a · ei · d ∈ R3|a ∈ {1, 0,−1}, i ∈ {1, 2, 3}},

where d ∈ R is the distance to the center point p and
ei ∈ R3 is the i− th Cartesian axis unit vector. Figure 1 il-
lustrates this sampling strategy. The additional points from
the local neighborhood are depicted as •.

2. Humans Dataset Waterproofing
To compute ground truth occupancies for our Humans

dataset, we first need to waterproof all scans. Hereby, it is
crucial to not loose desired detail. To this end, we have de-
veloped a new waterproofing algorithm. Instead of explic-
itly manipulating the meshes, we determine the occupancy
value of a 3D point in implicit space. We call our approach
implicit waterproofing.

https://virtualhumans.mpi-inf.mpg.de/ifnets/


Figure 1. Illustration of locations for feature extraction. In order to
add information on the local neighborhood into the point encoding,
we extract features not only at a query point’s location p itself, but
also at surrounding points (•) in a distance d along the Cartesian
axes.
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Figure 2. Visualization of the implicit waterproofing algorithm.
See text for in-depth explanation.

We assume, like in the real world, every object has a
certain thickness. Please note that this assumption is met
for all scans of the Humans dataset but sometimes does not
hold for artificially generated meshes representing thin ob-
jects by only one surface. To compute if a point p ∈ R3 is
inside or outside a mesh, we compute a ray though p par-
allel to one of the Cartesian axes (e.g. X-axis, see Figure 2
left). For a point inside the mesh (e.g. p1), the ray must in-
tersect the surface in an odd number of times before passing
through the point and in an even number of times in total,
e.g. the ray enters the mesh, passes the point, and leaves
the mesh. For a point outside the mesh (e.g. p2), the ray
must intersect the surface in an even number of times be-
fore passing through the point, e.g. the ray enters and leaves
the mesh before passing the point. Thus, for meshes with-
out holes such collision detection suffices to compute oc-
cupancies. Now consider a ray passing though a hole in
the surface before or after passing its corresponding point
(e.g. p3): A ray through a hole must intersect the surface
in an odd number of times in total. We can now classify
every point to be inside the mesh (green), outside (red) or
unknown (white), cf. Figure 2 (middle). In order to classify

the remaining unknown points, we rotate the object by some
degrees and repeat classification for the unclassified regions
(Figure 2 right). This process is iterated multiple times un-
til convergence. Remaining unknown points are assumed
to be outside. On the Humans dataset three 90 degree ro-
tations around the XYZ-axes have been sufficient to obtain
good results.

3. More Results

Single-View Human Reconstruction. In Figure 3, we
show more qualitative results for reconstructed full-body
clothed humans from partial point clouds. All point clouds
contain data only from one view-point and no information
about the back-side of the subjects - the typical output of a
depth camera.

Single-View Video Reconstruction. In this additional
experiment on Single-View Video Reconstruction, we recon-
struct a motion sequence of a subject from the BUFF [2]
dataset. The given input is a sequence of single-view point
clouds of a human in motion with fully occluded back, i.e.
point clouds only depicting the front of the person.

Precisely, the input is a sequence of 297 frames acquired
at 60 frames per second, i.e. circa 5 seconds long. To gener-
ate single-view point clouds from the 4D scans in the BUFF
dataset, we synthesize depth images per frame with only
250 × 250px resolution, producing around 5000 points per
frame on the visible side of the subject. Back-projection
of the depth-pixels into 3D space generates the single-view
point clouds. For this task, we add no additional temporal
constrains to IF-Nets. Instead, we directly apply the trained
network for Single-View Reconstruction from the previous
experiment on a frame-by-frame basis.

To successfully fulfil this task, IF-Nets have again to ful-
fil the requirements of the static single-view reconstruction,
namely: reconstruct unknown articulations, retain fine de-
tails, and meaningfully complete highly incomplete data at
the same time. For this task of dynamic single-view recon-
struction, IF-Nets are additionally tested to show their gen-
eralization capabilities: a) generalization to dynamic data
(motions) and b) generalization to a new source of data un-
seen during training. Dynamic data is particularly challeng-
ing, as its reconstruction has to be temporally and spatially
smooth.

Figures 4, 5 and 6 show 9 frames of the motion se-
quence. The input point cloud is shown in the first and sec-
ond columns with a front view and a side view respectively.
The third and forth columns analogously show the IF-Net
reconstructions. Please refer to the supplemental video for
the whole reconstructed sequence.

Again, IF-Nets reliably retain details present in the in-
put e.g. cloth wrinkles, hair style, or facial details. Further,



IF-Nets plausibly complete the back of the subject. Both
properties demonstrate good generalization to the unseen
data source. Despite not being trained on sequential data,
viewing the resulting sequence as a video shows surprising
temporally smooth reconstructions. This demonstrates that
IF-Nets allow to coherently reconstruct single-view video
while featuring high diversity in terms of clothing details
and variety of poses.
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Figure 3. More results for Single-View Human Reconstruction.
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Figure 4. Single-view point clouds and reconstructions of subsequent frames (top to bottom). The given input is a sequence of single-view
point clouds of a human in motion with fully occluded back from the BUFF dataset (left). Reconstructions (right) have been computed
frame-by-frame. The IF-Net has been trained only on static single-views from the Humans dataset. The results demonstrate that the IF-Net
generalizes to a new data source and to unseen poses during training and produces temporal coherence.
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Figure 5. Continuation of Figure 4. Single-view point clouds and reconstructions of subsequent frames.
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Figure 6. Continuation of Figure 4 and 5. Single-view point clouds and reconstructions of subsequent frames.


