
1. Trajectory Reconstruction Results
Shown in figure 1, we highlight some qualitative re-

sults from the non-rigid trajectory reconstruction task which
were omitted from the main paper due to space.

2. Omitted Derivations
Shown here are the derivations of the derivations of

Equations (13) and (14). Recall that Equation (13) is the
solution to the following problem:

argmin
x≥0

gT (x− x̂) +
L

2
‖x− x̂‖22 + ‖b ◦ x‖ , (1)

where we have dropped the super and subscripts for clarity
and x ∈ Rn. Since this is a convex function of x its solution
must satisfy the KKT conditions. We will let the function
being optimized be f(x), and the constraints be hi(x) =
−xi with the corresponding vector of variables u. First we
use the stationary condition:

Stationary =⇒ 0 ∈ ∂f(x) +

n∑
i=1

ui∂hi(x) (2)

=⇒ 0 = g + L(x− x̂) + b ◦ sign(x)− u
(3)

=⇒ xi = x̂i −
1

L
(gi + bi) +

ui
L
. (4)

Note that in the last step we used primal feasibility to say
sign(x) = 1. The final equation now has two cases. If
x̂i− 1

L (gi +bi) ≥ 0 then by complementary slackness ui =
0. Thus xi = x̂i− 1

L (gi+bi) ≥ 0 satisfies primal feasibility.
In the other case we can see that ui = −L(x̂i − 1

L (gi +
bi)) ≥ 0 satisfies dual feasibility, and that this assignment
gives xi = 0 which satisfies complementary slackness, and
primal feasibility. Putting the cases together we get

xi =

{
x̂i − 1

L (gi + bi) x̂i − 1
L (gi + bi) > 0

0 otherwise
. (5)

Now we show the derivation of the gradient in equation
(14). First we compute the case i < N .

g
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i ) (6)

= ∇
∥∥∥x[t]

i−1 −D>i x̂
[t−1]
i

∥∥∥2
2
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+∇
∥∥∥x̂[t−1]

i −D>i+1x
[t−1]
i+1

∥∥∥2
2

+∇
∥∥∥bi ◦ x̂[t−1]

i

∥∥∥
1

= Di(D
>
i x̂

[t−1]
i − x

[t]
i−1) (8)

+ x̂
[t−1]
i −D>i+1x

[t−1]
i+1 + bi.

Note that in the last light we used the condition that xi ≥ 0.
Computing the i = N case is identical except we drop the
second `2 term. Putting the two conditions together gives
equation (14).

3. Initialization of Parameters
In this section we describe the initializing procedure of

the Li and bi parameters.

Initializing bi: In general we found that the initialization
of bi didn’t impact the final performance, except for
two bad initializations which prevent any learning.
Firstly, if bi needs to be initialized to greater than 0,
otherwise its gradient is always 0 leading to no update.
On the other hand, if bi is set too high then the solu-
tion for the higher level codes is always the 0 vector.
In this case no learning takes place on the dictionaries.
Therefore we initialize bi to the largest positive value
that leads to full activations of all codes for the first
iteration.

Initializing Li: The Li parameter represents the step size
taken in the optimization. Xu et al. show that the
algorithm will convergance if Li is larger than the
Lipschitz constant of ∇f [t]i . To this end we initialize
Li to an easily computed upper bound of ∇f [t]i . We
now derive this bound.

In the previous section we showed that for i < N we
have:

∇f [t]i (x) = Di(D
>
i x− x

[t]
i−1) (9)

+ x−D>i+1 + bi.

The Lipschitz constantCi of this function by definition
satisfies:

C2
i ‖x− y‖22 ≤

∥∥∥∇f [t]i (x)−∇f [t]i (y)
∥∥∥2
2

(10)

≤
∥∥DiD

>
i (x− y)

∥∥2
2

(11)

+ ‖x− y‖22
≤ (σ4

i + 1) ‖x− y‖22 (12)

=⇒ Ci ≤
√
σ4
i + 1, (13)

where σi is the largest singular value of Di. Ap-
plying the same logic to the i = N case gives
CN ≤

√
σ4
i + 1. In order to actually use this bound

we then need to be able to bound σi when Di repre-
sents a convolution.



Figure 1: Selected visualization of results on the CMU Motion Capture Dataset. Note the outputs of both methods have been
smoothed with a moving average for clarity.



3.1. Bound on Singular Values of Convolutions

If D is a square matrix representing an n dimensional
convolution then it is known that D, is diagonalized
by the discrete Fourier transform (DFT) of dimension
n[1]. That is D = UΣU>, where U is a unitary ma-
trix which computes the appropriate DFT and Σ is a
diagonal matrix of the Fourier coefficients. In general
a convolutional layer of a DNN or our MLSC model
isn’t a convolution matrix, but instead has the form:

D =

D1,1 . . . D1,n

...
. . .

...
Dm,1 . . . Dm,n

 (14)

where m and n are the number of input and output
channels respectively and each Di,j is a convolution.
Using the diagonalization from before we then have:

D =

U . . .
U


Σ1,1 . . . Σ1,n

...
. . .

...
Σm,1 . . . Σm,n


U . . .

U


>

= Ũ

Σ1,1 . . . Σ1,n

...
. . .

...
Σm,1 . . . Σm,n

 Ũ>. (15)

Since each Σi,j is diagonal then there exists permuta-
tion matricies P and Q that group corresponding di-
agonal entries of the Σi,j into a block diagonal matrix.
That is,

D = ŨP

A1

...
Al

QŨ>. (16)

The entries of (Ak)i,j = ak,i,j are the kth Fourier
component of the Di,j . Letting A denote the en-
tire diagonal matrix in Equation (16) we have D =
ŨPAQŨ> and are finally ready to bound the singular
values. First recall that σ(AB) ≤ σ(A)σ(B) where
σ(X) is the largest singular value of X. We also need
the fact that since Ũ, P, and Q are unitary, their largest
sigular values are at most one. Putting this together
then gives σ(D) ≤ σ(Ũ)σ(P)σ(A)σ(Q)σ(Ũ) ≤
σ(A). Since A is block diagonal we can further say
σ(A) ≤ maxk σ(Ak). Lastly we use σ2(X) ≤ ‖X‖2F
to get the final bound:

σ(D) ≤ max
k
‖Ak‖2F . (17)

Since the Ak can be computed efficiently using the
FFT this bound is effective in practice. Finally we
consider that convolutions also often use striding or

padding. This does not affect the bound since both op-
erations correspond to pre and post multiplication of D
with matricies which either delete rows or add columns
of zeros. Both of these operations have largest singular
values of 1 so as stated before this can only decrease
σ(D).

4. Architectures and Training
In this section we will simply list the specific parame-

ters used for the models in each experimental section. All
models were trained with the ADAM optimizer until con-
vergence with a fixed learning rate of 0.001.

4.1. JPEG Artifact Reduction

The MLSC architectures for this task used 100 iterations
and used the parameters:

Name Kernel Sizes # Filters Striding
Main 5, 5, 5 16, 64, 128 2, 1, 1
Comparison with Su-
lam et al.

7, 5, 7 16, 64, 128 2, 1, 1
.

4.2. Trajectory Reconstruction

The MLSC architectures for this set of experiments used
30 iterations and the parameters:

Name Kernel Sizes # Filters Striding
1 Layer 30 512 2
3 Layer 10, 10, 10 16, 64, 128 2, 2, 1

.

Our Trajectory CNN took as input the 3 × 150 tensor
Q>u and then had the architecture:

Layer name Parameters

conv_1

[
5, 32
5, 32

]
conv_2

[
5, 64
5, 64

]
conv_3

[
3, 128
3, 128

]

conv_4


3, 256
3, 256
3, 256
3, 256


transp_conv_4

[
3, 128

]
transp_conv_3

[
3, 64

]
transp_conv_2

[
5, 32

]
transp_conv_1

[
5, 3
]

with skip connections between corresponding en-
coder/decoder layers. The smaller networks were
formed the same as with the guided image colorization
experiments.
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