
Evaluating Weakly Supervised Object Localization Methods Right
– Supplementary Material –

We include additional materials in this document. Each
section matches with the main paper sections: §A to main
paper §3, §B to main paper §4, and §C to main paper §5.

A. Problem Formulation of WSOL
A.1. CAM as patch-wise posterior approximation

In the main paper §3.1, we have described class activa-
tion mapping (CAM) [13] as a patch-wise posterior approx-
imator trained with image-level labels. We describe in detail
why this is so.
Equivalent re-formulation of CAM. Originally, CAM is a
technique applied on a convolutional neural network classi-
fier h : R3×H×W → RC , where C is the number of classes,
of the following form:

hc(X) =
∑
d

Wcd

 1

HW

∑
ij

gdij(X)

 (1)

where c, d are the channel-dimension indices and i, j are
spatial-dimension indices. In other words, h is a fully con-
volutional neural network, followed by a global average
pooling (GAP) and a linear (fully-connected) layer into a
C-dimensional vector. We may swap the GAP and linear
layers without changing the representation:

hc(X) =
1

HW

∑
ij

(∑
d

Wcdgdij(X)

)
(2)

=:
1

HW

∑
ij

fcij(X) (3)

where f is now a fully-convolutional network. Each pixel
(i, j) in the feature map, (f1ij(X), · · · , fCij(X)), corre-
sponds to the classification result of the corresponding field
of view in the input X, written as Xij . Thus, we equiva-
lently write

hc(X) =
1

HW

∑
ij

fc(Xij) (4)

where f is now re-defined as a image patch classifier with
1-dimensional feature output (not fully convolutional).

CAM as patch-wise posterior approximator. h is now the
average-pooled value of the patch-wise classification scores
fc(Xij). CAM trains f by maximizing the image-wide pos-
terior of the ground truth class, where the posterior is de-
fined as the softmax over f(Xij):

log p(Y |X) := log softmaxY

 1

HW

∑
ij

f(Xij)

 . (5)

In other words, CAM trains the network for patch-
wise scores fc(Xij) to estimate the image-wide posterior
p(Y |X).

At inference time, CAM estimates the pixel-wise poste-
rior p(Y |Xij) approximately by performing p(Y |Xij) ≈
fY (Xij)/maxαβ fY (Xαβ) (modulo some calibration to
make sure p(Y |Xij) ∈ [0, 1]).

A.2. Proof for the ill-posedness lemma

We first define an evaluation metric for our score map for
an easier argumentation.

Definition A.1. For a scoring rule s and a threshold τ , we
define the pixel-wise localization accuracy PxAcc(s, τ) as
the probability of correctly predicting the pixel-wise labels:

PxAcc(s, τ) = PX,T (s(X) ≥ τ | T = 1) · PX,T (T = 1)

+PX,T (s(X) < τ | T = 0) · PX,T (T = 0)

We prove the following lemma.

Lemma A.2. Assume that the true posterior p(Y |M) with
a continuous pdf is used as the scoring rule s(M) =
p(Y |M). Then, there exists a scalar τ ∈ R such that
PxAcc(p(Y |M), τ) = 1 if and only if the foreground-
background posterior ratio p(Y=1|M fg)

p(Y=1|M bf)
≥ 1 almost surely,

conditionally on the event {T (M fg) = 1 and T (M bf) = 0}.

Proof. We write E := {T (M fg) = 1 and T (M bf) = 0}.
(Proof for “if”) Assume α ≥ 1 almost surely, given E. Let

τ := min
G:P (G∆{T (m)=0})=0

max
m∈G

p(Y = 1|M = m) (6)
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Figure 1: Ducks. Random duck images on Flickr. They contain
more lake than feet pixels: p(water|duck)� p(feet|duck).

where ∆ is the set XOR operation: A∆B := (A ∪ B) \
(A ∩B). Then, for almost all M fg,M bg following E,

p(Y = 1|M fg) ≥ τ ≥ p(Y = 1|M bg). (7)

Therefore,

P (p(Y = 1|M fg) ≥ τ | T (M fg) = 1)

= P (p(Y = 1|M bg) ≤ τ | T (M bg) = 0) = 1 (8)

and so PxAcc(p(Y |M), τ) = 1.
(Proof for “only if”) Assume PxAcc(p(Y |M), τ) = 1 for
some τ . W.L.O.G., we assume that P (T (M) = 1) 6= 0
and P (T (M) = 0) 6= 0 (otherwise, P (E) = 0 and the
statement is vacuously true). Then, Equation 8 must hold
to ensure PxAcc(p(Y |M), τ) = 1. Equation 7 then also
holds almost surely, implying α ≥ 1 almost surely. �

A.3. Foreground-background posterior ratio

We have described the the pathological scenario for
WSOL as when the foreground-background posterior ratio
α is small (§3.2). We discuss in greater detail what it means
and whether there are data-centric approaches to resolve the
issue. For quick understanding, assume the task is the lo-
calization of duck pixels in images. The foreground cue of
interest M fg is “feet” of a duck and background cue of in-
terestM bg is “water”. Then, we can write the posterior ratio
as

α :=
p(duck|feet)
p(duck|water)

=
p(feet|duck)

p(water|duck)
·
(
p(feet)
p(water)

)−1

α < 1 implies that lake patches are more abundant in duck
images than are duck’s feet (see Figure 1) for an illustration.

To increase α, two approaches can be taken. (1) Increase
the likelihood ratio p(feet|duck)

p(water|duck) . This can be done by collect-
ing more images where duck’s feet have more pixels than
lake does. (2) Decrease the prior ratio p(feet)

p(water) . Note that the
prior ratio can be written

p(feet)

p(water)
=

p(feet|duck)p(duck) + p(feet|duckc)p(duckc)

p(water|duck)p(duck) + p(water|duckc)p(duckc)

Method Paper Code

CAM [13] sij ≥ 0.2 sij ≥ 0.2

HaS [4] Follow CAM† Follow CAM
ACoL [11] Follow CAM ŝij ≥ unknown
SPG [12] Grid search threshold ŝij ≥ unknown
ADL [2] Not discussed ŝij ≥ 0.2†

CutMix [9] sij ≥ 0.15 ŝij ≥ 0.15

Our protocol ŝij ≥ τ? ŝij ≥ τ?

sij :=
sij

maxkl skl
ŝij :=

sij −minkl skl
maxkl skl −minkl skl

Table 1: Calibration and thresholding in WSOL. Score calibra-
tion is done per image: max (sij) or min-max (ŝij) normalization.
Thresholding is required only for the box evaluation. τ? is the op-
timal threshold (§4.1 in main paper). Daggers (†) imply that the
threshold depends on the backbone architecture.

With fixed likelihoods p(feet|duck) and p(water|duck), one
can decrease the prior ratio by increasing the likelihood of
lake cues in non-duck images p(water|duckc). We can alter
WSOL into a more well-posed task also by including many
background images containing confusing background cues.

Such data-centric approaches are promising future re-
search directions for turning WSOL into a well-posed task.

B. Evaluation Protocol for WSOL
B.1. Score map normalization

A common practice in WSOL is to normalize the score
maps per image because the maximal (and minimal) scores
differ vastly across images. Prior WSOL papers have in-
troduced either max normalization (dividing through by
maxij sij) or min-max normalization (additionally map-
ping minij sij to zero). After normalization, WSOL meth-
ods threshold the score map at τ to generate a tight box
around the binary mask {(i, j) | sij ≥ τ}. τ is typically
treated as a fixed value [13, 11, 9] or a hyperparameter to
be tuned [4, 12, 2]. We summarize that how prior works
calibrate and threshold score maps in Table 1. As discussed
in §4.1 of main paper, we use the min-max normalization.

B.2. Data preparation

We present the following data-wise contributions in this
paper (contributions bolded):

• CUB: New data (5 images per class) with bounding
box annotations.

• ImageNet: ImageNetV2 [5] with new bounding box
annotations.

• OpenImages: Processed a split for the WSOL training,
hyperparameter search, and evaluation with ground
truth object masks.



B.2.1 ImageNet

The test set of ImageNet-1k dataset [6] is not avail-
able. Therefore, many researchers report the accuracies
on the validation set for their final results [9]. Since
this practice may let models overfit to the evaluation
split over time, ImageNetV2 [5] has been proposed as
the new test sets for ImageNet-1k trained models. Ima-
geNetV2 includes three subsets according to the sampling
strategies, MatchedFrequency, Threshold0.7, and
TopImages, each with 10 000 images (10 images per
class). We use the Threshold0.7 split as our
train-fullsup. Since ImageNetV2 does not contain
localization supervision, we have annotated bounding boxes
on those images, following the annotation protocol of Ima-
geNet. The total number of annotated bounding boxes are
18 532.

B.2.2 CUB

We have collected 5 images for each of the 200 CUB fine-
grained bird classes from Flickr. The overall procedure is
summarized as:

1. Crawl images from Flickr.

2. De-duplicate images.

3. Manually prune irrelevant images (three people).

4. Prune with model classification scores.

5. Resize images.

6. Annotate bounding boxes.

Crawl images from Flickr. Since original CUB itself is
collected from Flickr, we use Flickr as the source of bird
images. We have used the Flickr API1 to crawl up to
400 images per class with class name as search terms. We
have only crawled images under the following licenses:

• Attribution

• Attribution-NonCommercial

• Public Domain Dedication

• Public Domain Mark

De-duplicate images. We de-duplicate the images using
the ImageHash library2 first among the crawled images
themselves and then against the training and test splits of
CUB.

1https://www.flickr.com/services/api/
2https://pypi.org/project/ImageHash/

Figure 2: CUB version 2. Sample images.

Manually prune irrelevant images (three people). Since
crawled images of each class contain negative-class images
(non birds and birds of wrong categories), three humans
have participated in the prune-out process. We have only
kept the images that all three have voted for “positive”.
Prune with model classification scores. To match with
the original CUB data distribution, we have trained a fine-
grained bird classifier using ResNet50 [3] on the CUB train-
ing split. Among crawled images, those with ground truth
class confidence scores lower than 0.5 have been pruned
out.
Achieving 5 images per class. At this point, most classes
have more than 5 images per class and a few have less than
5. In the former case, we have randomly sampled 5 images
per class.
Resize images. Photographic technologies have made sig-
nificant advances over the decade since the time original
CUB was collected. As a result, image size statistics differ.
To fix this, we have resized the images appropriately.
Annotate bounding boxes. The evaluation on CUB is
based on bounding boxes. Thus, the held-out set images
are supplied with tight bounding boxes around birds (one
per image).

B.2.3 OpenImages

There are three significant differences between OpenIm-
agesV5 [1] and CUB or ImageNet that make the OpenIm-
ages not suitable as a WSOL benchmark in its original form.
(1) Images are multi-labeled; it is not sensible to train classi-
fiers with the standard softmax cross-entropy loss assuming
single label per image. (2) OpenImages has less balanced
label distributions. (3) There are nice instance segmentation
masks, but they have many missing instances.

We have therefore processed a subset of OpenImages
into a WSOL-friendly dataset where the above three issues
are resolved. The procedure is as follows:

1. Prune multi-labeled samples.

2. Exclude classes with not enough samples.

https://www.flickr.com/services/api/
https://pypi.org/project/ImageHash/


Figure 3: OpenImages V5 sample. Example of “group-of” box
annotations. There is only one “Book” mask in the left bottom
corner.

3. Randomly sample images for each class.

4. Prepare binary masks.

5. Introduce ignore regions.

Prune multi-labeled samples. We prune the multi-labeled
samples in the segmentation subset of OpenImages. This
process rejects 34.5% samples in OpenImages.
Exclude classes with not enough samples. After pruning
multi-label samples, some classes are not available in val-
idation and test sets. We have first defined the minimum
number of samples per classes as (300, 25, 50) for (train,
validation, test), and have excluded classes that do not meet
the minimum requirement, resulting in 100 classes (out of
350 original classes).
Randomly sample images for each class. We have
randomly sampled (300, 25, 50) samples per class for
(train, validation, test). This eventually results in 29 819
train-weaksup (train), 2 500 train-fullsup (vali-
dation), and 5 000 test (test) samples.
Prepare binary masks. WSOL methods are evaluated
against binary masks of the foreground category in each im-
age. Since OpenImages comes with instance-level masks
of various categories, we have taken the union of instance
masks of the class of interest in every image to build the
binary masks.
Introduce ignore regions. OpenImages has instance-wise
masks, but not all of them are annotated as masks. When
the objects are difficult to be annotated instance-wise or
there are simply too many, the “group-of” box annotations
are provided over the region containing multiple instances
(e.g. hundreds of books on bookshelves in an image taken
at a library – See Figure 3). We have indicated the regions
with the “group-of” boxes as “ignore” regions, and have ex-
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Ranking (Kendall's tau: 0.743)

Figure 4: Proxy ImageNet ranking. Ranking of hyperparam-
eters is largely preserved between the models trained on the full
train-weaksup and its 10% proxy. Kendall’s tau is 0.743.

cluded them from the evaluation during the computation of
PxPrec, PxRec, and PxAP.

B.3. Transferability of rankings between
train-fullsup and test

As detailed in main paper §4.2, we search hyperparam-
eters on train-fullsup and test them on test. To
validate if the found hyperparameter rankings do transfer
well between the splits, we show the preservation of rank-
ing statistics in Table 2 and visualize the actual rankings in
Figure 6. We observe that the rankings are relatively well-
preserved (with Kendall’s tau values > 0.7).

B.4. Hyperparameter search with proxy
train-weaksup

We have reduced the training set size
(train-weaksup) to 10% for ImageNet hyperpa-
rameter search for the interest of computational efficiency
(§4.2). We examine how much this reduction affects the
rankings of hyperparameters. We show a similar analysis as
in §B.3: see Figure 4. We observe again that with Kendall’s
tau value 0.743, the two rankings are largely preserved.

C. Experiments

C.1. Prior WSOL methods and hyperparameters

We describe each method in greater detail here. The list
of hyperparameters for each method is in Table 3.

CAM, CVPR’16 [13]. Class Activation Mapping trains a
classifier of fully-convolutional backbone with global av-
erage pooling structure, and at test time uses the logit
outputs before the global average pooling for the scoring
rule s(Xij). See Appendix §A.1 for the interpretation
of CAM as a posterior approximator. CAM has learning
rate (LR) and the score-map resolution (SR) as hyperpa-
rameters. LR is sampled log-uniformly from [10−5, 100],
where end points correspond roughly to “no training” and
“training always diverges” cases. SR is sampled from
Categorical{14, 28}, two widely used resolutions in prior



ImageNet CUB OpenImages Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean
CAM [13] 0.887 0.795 0.933 0.872 0.731 0.706 0.758 0.732 0.869 0.714 0.934 0.839 0.814
HaS [4] 0.855 0.795 0.867 0.839 0.422 0.714 0.867 0.668 0.786 1.000 0.667 0.818 0.775
ACoL [11] 0.981 1.000 0.619 0.867 0.895 0.850 0.850 0.854 0.983 0.970 0.956 0.970 0.897
SPG [12] 0.944 0.766 0.900 0.870 0.697 0.779 0.889 0.788 0.758 0.874 0.929 0.854 0.837
ADL [2] 0.917 0.944 0.857 0.906 0.891 1.000 0.810 0.900 0.891 1.000 1.000 0.964 0.923
CutMix [9] 0.897 0.571 1.000 0.823 0.544 0.407 0.879 0.610 0.838 0.867 0.714 0.806 0.746

Table 2: In-distribution ranking preservation. Kendall’s tau values for the hyperparameter ranking between train-fullsup and
test are shown.

Methods Hyperparameter Distribution

Common Learning rate LogUniform[10−5, 100]
Score-map resolution Categorical{14, 28}

HaS [4] Drop rate Uniform[0, 1]
Drop area Uniform[0, 1]

ACoL [11] Erasing threshold Uniform[0, 1]

SPG [12] Threshold δB1
l Uniform[0, 1]

Threshold δB1
h Uniform[δB1

l , 1]
Threshold δB2

l Uniform[0, 1]
Threshold δB2

h Uniform[δB2
l , 1]

Threshold δCl Uniform[0, 1]
Threshold δCh Uniform[δCl , 1]

ADL [2] Drop rate Uniform[0, 1]
Erasing threshold Uniform[0, 1]

CutMix [9] Size prior 1
Uniform(0,2]

− 1
2

Mix rate Uniform[0, 1]

Table 3: Hyperparameter search spaces.

WSOL methods. All five methods below use CAM tech-
nique in the background, and have LR and HR as design
choices.

HaS, ICCV’17 [4]. Hide-and-Seek (HaS) is a data aug-
mentation technique that divides an input image into grid-
like patches, and then randomly select patches to be
dropped. The hyperparameters of HaS are drop rate (DR)
and drop area (DA). Specifically, the size of each patch is
decided by DA, and the probability of each patch to be se-
lected for erasing is decided by DR. DA is sampled from
a uniform distribution U [0, 1], where 0 corresponds to “no
grid” and 1 indicates “full image as one patch”.

ACoL, CVPR’18 [11]. Adversarial Complementary
Learning (ACoL) adds one more classification head to
backbone networks. From one head, ACoL finds the
high-score region using CAM using erasing threshold (ET)
and erases it from an internal feature map. The other head
learns remaining regions using the erased feature map. We
sample ET from a uniform distribution U [0, 1], where 0
means “erasing whole feature map” and 1 means “do not
erase”.

SPG, ECCV’18 [12]. Self-produced Guidance (SPG) uti-
lizes spatial information about fore- and background using
three additional branches (SPG-B1,B2,C). To divide fore-
ground and background from score-map, they introduce two
hyperparameters, δl and δh, per each branch. When the
score is lower than δl, the pixel is considered as background,
and the pixel is considered as foreground when the score is
higher than δh. The remaining region (higher than δl, lower
than δh) is ignored. We first sample δl from U [0, 1], and
then δh is sampled from U [δl, 1].

ADL, CVPR’19 [2]. Attention-based Dropout Layer
(ADL) is a block applied on an internal feature map during
training. ADL produces a drop mask by finding the high-
score region to be dropped using another scoring rule [10].
Also, ADL produces an importance map by normalizing the
score map and uses it to increase classification power of the
backbone. At each iteration, only one component is applied
between the drop mask and importance map. The hyper-
parameters of ADL are drop rate (DR) that indicates how
frequently the drop mask is selected and erasing threshold
(ET) that means how large regions are dropped. We sample
DR and ET from uniform distributions U [0, 1].

CutMix, ICCV’19 [9]. CutMix is a data augmentation
technique, where patches in training images are cut and
paste to other images and target labels are mixed likewise.
Its hyperparameters consist of the size prior α (used for
sampling sizes according to ∼ Beta(α, α)) and the mix
rate r (Bernoulli decision for “CutMix or not”). The size
prior is sampled from the positive range 1

Unif(0,2] −
1
2 ; then,

Var(Beta(α, α)) follows the uniform distribution between 0
and 0.25 (maximal variance; two Dirac deltas at 0 and 1).

C.2. Classification results of WSOL methods

The widely-used “top-1 localization accuracy” for
WSOL represents both the classification and localization
performances. The metric can be misleading as a localiza-
tion metric, as the increase in numbers can also be attributed
to the improved classification accuracies. Thus, in the main
paper, we have suggested using on the “GT-known” type



ImageNet CUB OpenImages Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean

CAM [13] 63.8 68.7 75.9 69.5 26.8 61.8 58.4 49.0 67.3 36.6 72.6 58.8 59.1
HaS [4] 61.9 65.5 63.1 63.5 70.9 69.9 74.5 71.8 60.0 68.4 74.0 67.5 67.6
ACoL [11] 60.3 64.6 61.6 62.2 56.1 71.6 64.0 63.9 68.2 40.7 70.7 59.9 62.0
SPG [12] 61.6 65.5 63.4 63.5 63.1 58.8 37.8 53.2 71.7 43.5 65.4 60.2 59.0
ADL [2] 60.8 61.6 64.1 62.2 31.1 45.5 32.7 36.4 66.1 46.6 56.1 56.3 51.6
CutMix [9] 62.2 65.5 63.9 63.8 29.2 70.2 55.9 51.8 68.1 53.1 73.7 65.0 60.2

Table 4: Classification performance of WSOL methods. Classification accuracies of the models in Table 2 of the main paper are
shown. Hyperparameters for each model are optimally chosen for the localization performances on train-fullsup split. Classification
performances may be sub-optimal when the best localization performance is achieved at early epochs.

Top-1 localization accuracy GT-known localization; MaxBoxAcc and PxAP
ImageNet CUB ImageNet CUB OpenImages

Methods V I R V I R V I R V I R V I R

R
ep

or
te

d

CAM [13] 42.8 - 46.3 37.1 43.7 49.4 - 62.7 - - - - - - -
HaS [4] - - - - - - - - - - - - - - -

ACoL [11] 45.8 - - 45.9 - - - - - - - - - - -
SPG [12] - 48.6 - - 46.6 - - 64.7 - - - - - - -
ADL [2] 44.9 48.7 - 52.4 53.0 - - - - 75.4 - - - - -

CutMix [9] 43.5 - 47.3 - 52.5 54.8 - - - - - - - - -

R
ep

ro
du

ce
d

CAM [13] 45.5 48.8 51.8 45.8 40.4 56.1 61.1 65.3 64.2 71.1 62.1 73.2 58.1 61.4 58.0
HaS [4] 46.3 49.7 49.9 55.6 41.1 60.7 61.9 65.5 63.1 76.2 57.7 78.1 56.9 58.5 58.2

ACoL [11] 45.5 49.9 47.4 44.8 46.8 57.8 60.3 64.6 61.6 72.3 59.5 72.7 54.6 63.0 57.8
SPG [12] 44.6 48.6 48.5 42.9 44.9 51.5 61.6 65.5 63.4 63.7 62.7 71.4 55.9 62.4 57.7
ADL [2] 44.4 45.0 51.5 39.2 35.2 41.1 60.8 61.6 64.1 75.6 63.3 73.5 58.3 62.1 54.3

CutMix [9] 46.1 49.2 51.5 47.0 48.3 54.5 63.9 62.2 65.4 71.9 65.5 67.8 58.2 61.7 58.6

Architecture
V VGG-GAP [7]
I InceptionV3 [8]
R ResNet50 [3]

Table 5: Previously reported vs our results. The first six rows are reported results in prior WSOL papers. When there are different
performance reports for the same method in different papers, we choose the greater performance. The last six rows are our re-implemented
results under the new evaluation method (§4).

of metrics like MaxBoxAcc and PxAP that measures the
localization performances given perfect classification.

Here, we measure the classification accuracies of the
models in Table 2 of the main paper, to complete the analy-
sis. The performances are reported in Table 4. There are in
general great fluctuations in the classification results (26.8%
to 74.5% on CUB). This is because we have selected the
hyperparameters for each model that maximize the local-
ization performances on train-fullsup split. In many
cases, the best localization performances are achieved at
early epochs, before the classifiers are sufficiently trained
(see also §C.6 and Figure 12). The result signifies that lo-
calization and classification performances may not neces-
sarily correlate and, therefore, localization-only metrics like
MaxBoxAcc and PxAP must be used for model selection
and evaluation of WSOL methods.

C.3. Reproducing prior WSOL results

We also summarize reported results in prior WSOL pa-
pers [13, 4, 11, 12, 2, 9] along with our reproduced re-

sults in Table 5. While our main evaluation metrics are
the classification-disentangled GT-known measures (§4.1 in
main paper), we also report the top-1 localization metrics
that also measure the classification scores to match the re-
ported numbers. Note that we use oracle τ for Top-1 local-
ization accuracy.

We experimentally observe that training epochs and
batch sizes influence the localization accuracies (∼ 10pp
in MaxBoxAcc). However, the training details for each
method are not given by the corresponding papers. All
methods should share the same training budget for fair com-
parisons. Therefore, we fix our training epochs to (10, 50,
10) for (ImageNet, CUB, OpenImages) experiments, and fix
the batch size to 32 for all datasets.

Following the prior methods [13, 4, 11, 12, 2, 9], we train
all six methods by fine-tuning ImageNet pre-trained model.
Specifically, we apply 10× scale of learning rate to higher-
level layers of backbone networks during training. We con-
sider the last two layers for VGG, last three layers for Incep-
tionV3, and last three residual blocks, and fully connected



ImageNet (MaxBoxAccV2) CUB (MaxBoxAccV2) OpenImages (PxAP) Total
Methods VGG Inception ResNet Mean VGG Inception ResNet Mean VGG Inception ResNet Mean Mean

CAM [13] 60.0 63.4 63.7 62.4 63.7 56.7 63.0 61.1 58.3 63.2 58.5 60.0 61.2
HaS [4] +0.6 +0.3 -0.3 +0.2 +0.0 -3.3 +1.7 -0.5 -0.2 -5.1 -2.6 -2.6 -1.0
ACoL [11] -2.6 +0.3 -1.4 -1.2 -6.3 -0.5 3.5 -1.1 -4.0 -6.0 -1.2 -3.7 -2.0
SPG [12] -0.1 -0.1 -0.4 -0.2 -7.4 -0.8 -2.6 -3.6 +0.0 -0.9 -1.8 -0.9 -1.6
ADL [2] -0.2 -2.0 +0.0 -0.7 +2.6 +2.1 -4.6 +0.0 +0.4 -6.4 -3.3 -3.1 -1.3
CutMix [9] -0.6 +0.5 -0.4 -0.2 -1.4 +0.8 -0.2 -0.3 -0.2 -0.7 -0.8 -0.6 -0.3

Best WSOL 60.6 63.9 63.7 62.6 66.3 58.8 66.4 61.1 58.7 63.2 58.5 60.0 61.2
FSL baseline 60.3 65.3 66.3 64.0 71.6 86.6 82.4 80.2 65.9 74.1 74.4 71.5 71.9
Center baseline 52.5 52.5 52.5 52.5 59.7 59.7 59.7 59.7 45.8 45.8 45.8 45.8 52.3

Table 6: Re-evaluating WSOL with MaxBoxAccV2. We re-evaluate six recently proposed WSOL methods with MaxBoxAccV2. The
experimental setting is the same as that of Table 2 in the main paper.

layers for ResNet as the higher-level layers.
Note that with GT-known metrics, our re-

implementations produce better performances than the
previously reported results (e.g. 62.7 → 65.3 for CAM
on ImageNet with Inception backbone). This is perhaps
because MaxBoxAcc and PxAP are based on the best
operating thresholds.

Top-1 localization accuracies are reproduced well in
general, except for the ADL: e.g. 52.4 → 39.2 for ADL
on CUB with VGG backbone. This is due to the reduced
training epochs compared to the original paper [2], which
results in a decreased classification accuracies.

C.4. Score calibration and thresholding

The operating threshold τ for the score map s is an
important parameter for WSOL. We show additional plots
and visualizations to aid understanding. In Figure 7, we
show the BoxAcc and PxPrec-PxRec performances at
different operating thresholds with diverse architectures and
datasets. It extends the main paper Figure 5. We observe
again that the optimal operating thresholds τ? are vastly
different across data and architectures for BoxAcc. The
MaxBoxAcc in each method are relatively stable across
methods especially on ImageNet. OpenImages PxPrec-
PxRec curves do not exhibit big differences amongst
WSOL methods, likewise.

In Figure 5, we visualize score distributions for different
WSOL methods. We observe that methods have different
distributions of scores; ACoL in particular tends to gener-
ate flatter score maps. Comparing dataset, we observe that
OpenImages tends to have more peaky score distributions.
It is therefore important to find the optimal operating point
for each method and dataset for fair comparison.

We visualize more score maps in Figure 8, 9, 10; it ex-
tends the main paper Figure 4. We observe qualitatively dif-
ferent score maps in general across methods. However, the
optimal IoU values are not as different and hard to predict

Figure 5: CAM pixel value distributions. On ImageNet and
OpenImages test.

just by visually looking at the samples. Again, it is impor-
tant to have an objective way to set the thresholds τ in each
case.

C.5. Hyperparameter analysis

We show the performance of all 30 hyperparameter
search iterations on three datasets with three backbone ar-
chitectures in Figure 11; it extends the main paper Figure 6.
We observe similar trends as in the main paper. (1) Per-
formances do vary according to the hyperparameter choice,
so the hyperparameter optimization is necessary for the op-
timal performances. (2) CAM is among the more stable
WSOL methods. (3) ACoL and ADL show greater sensi-
tivity to hyperparameters in general. (4) CUB is a diffi-
cult benchmark where random choice of hyperparameters is
highly likely to lead to performances worse than the center-
Gaussian baseline.

C.6. Learning Curves.

We show the learning curves for CUB, ImageNet, Open-
Images in Figure 12. We observe that the performances
converge at epochs (10, 50, 10) for (ImageNet, CUB, Open-
Images); the number of epochs for training models is thus
sufficient for all methods. Note that learning rates are de-



cayed by 10 every (3, 15, 3) epochs for (ImageNet, CUB,
OpenImages). For the most cases, performance increases
as the training progresses. However, in some cases (e.g.
CUB, SPG and OpenImages, CAM cases), best perfor-
mances have already achieved at early iteration. That is,
classification training rather hurts localization performance.
Analyzing this is an interesting future study.

C.7. Evaluating WSOL methods with
MaxBoxAccV2

We re-evaluate six recently proposed WSOL methods
with MaxBoxAccV2, and the results are shown in Table 6.
All training configurations but evaluation metrics are the
same as those of the main paper. We evaluate the last check-
point of each training session. We obtain the same conclu-
sions as with the original metric, MaxBoxAcc: (1) there
has been no significant progress in WSOL performances
beyond vanilla CAM [13] and (2) with the same amount
of fully-supervised samples, FSL baselines provide better
performances than the existing WSOL methods.
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Figure 6: Preservation of hyperparameter rankings. Ranking of hyperparameters is largely preserved between train-weaksup and
test. We only show the converged sessions (§5.4). Results on ResNet50, OpenImages.
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Figure 7: Performance by operating threshold τ . CUB and ImageNet: BoxAcc versus τ , OpenImages: PxPrec versus PxRec.
ResNet, VGG, and Inception architecture results are used. This is the extension of Figure 5 in the main paper.



(a) Label: Harvester

(b) Label: Park bench

(c) Label: Space bar

(d) Label: Hard disk

Figure 8: ImageNet score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from ImageNet.



(a) Label: Common Tern

(b) Label: Pomarine Jaeger

(c) Label: Red bellied Woodpecker

(d) Label: Vesper Sparrow

Figure 9: CUB score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from CUB.



(a) Label: Camera

(b) Label: Horse

(c) Label: Limousine

(d) Label: Squirrel

Figure 10: OpenImages score maps. Score maps of CAM, HaS, ACoL, SPG, ADL, CutMix from OpenImages.
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Figure 11: All results of the 30 hyperparameter trials. CUB, ImageNet, OpenImages performances of all 30 randomly chosen hyper-
parameter combinations for each method. This is the extension of Figure 6 in the main content.
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Figure 12: Learning curves. Results on three datasets with VGG, Inception and ResNet architectures.


