
Cars Can’t Fly up in the Sky: Improving Urban-Scene Segmentation via

Height-driven Attention Networks

A. Supplementary Material

This section complements our paper by presenting addi-

tional information, experimental results and visualizations.

First, we provide further comparison results with other

state-of-the-arts in Section A.1. In Section A.2, we conduct

experiments to find the best way to incorporate positional

information. We then describe the architecture details of

the baseline and HANet in Section A.3. In Section A.4, we

compare height-wise and width-wise class distributions. Fi-

nally, we conduct quantitative and qualitative comparisons

between ours and the baseline model in Section A.5.

A.1. Additional comparisons with other models

Comparisons on Cityscapes validation set We compare

the best performance of our model with other state-of-the-

art models on the Cityscapes validation set.

Models (Year) Backbone mIoU(%)

ANLNet [8] (’19) ResNet-101 79.9

DANet [1] (’19) ResNet-101 81.5

CCNet [3] (’19) ResNet-101 81.3

ACFNet [6] (’19) ResNet-101 81.46

Ours ResNet-101 82.05

Table 1: Comparisons against the best performances reported

in the published papers of other state-of-the-art models on the

Cityscapes validation set. The models based on ResNet-101 are

compared.

A.2. Positional encoding and embedding.

In the NLP domains, there exist different approaches

to inject positional information of each token in the input

sequence. Positional encoding using sinusoidal values [5]

and learned positional embeddings [2] have been shown to

produce comparable performances [5]. We conduct experi-

ments to find the best way to incorporate positional infor-

mation. It turns out that the best way is to put sinusoidal

positional encoding into the second convolutional layer of

HANet (Table 2).

A.3. Further implementation details

We implement our methods based on the open-

source implementations of NVIDIA semantic segmentation

model [7]. HANet consists of three convolutional layers in-

corporating dropout and batch normalization. To extract the

Methods
Injected layer

1st 2nd

Sinusoidal encoding 79.61% 80.29%

Learnable embedding (from scratch) 79.95% 79.60%

Learned embedding (from pretrained) 79.61% 79.30%

Table 2: Performances comparison with respect to the layers and

methods of positional encoding. Note that HANet consists of three

convolutional layers. ResNet-101, output stride 8 on Cityscapes

validation set.

height-wise contextual information from each row, we em-

pirically adopt average pooling.

HANet architecture Fig. 1 shows detailed architecture

of HANet. Width-wise pooling and interpolation for coarse

attention are implemented using two-dimensional adap-

tive average pooling operation1 in Pytorch. Afterwards, a
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Figure 1: Detailed architecture of HANet. p denotes the dropout

probability, and K denotes the kernel size of each one-dimensional

convolution layer. BN denotes a batch normalization layer.

1https://pytorch.org/docs/stable/nn.html#torch.

nn.AdaptiveMaxPool2d



Model mIoU road swalk build. wall fence pole tligh. tsign veg terr. sky pers. rider car truck bus train mcyc bcyc

Baseline 81.14 98.5 87.3 93.6 66.1 64.4 68.7 74.0 82.0 93.2 65.6 95.2 84.3 66.0 95.7 80.6 92.8 85.0 68.9 80.0

+HANet 82.05 98.6 87.7 93.7 66.7 66.2 68.7 74.4 81.9 93.3 67.7 95.3 84.5 66.9 96.1 87.9 92.7 86.0 70.7 80.1

Table 3: Performance comparison of our methods against the baseline in terms of per-class IoU and mIoU measures. Inference techniques

such as sliding, multi-scale, and flipping are applied. ResNet-101, output stride 8 on the Cityscapes validation set.

dropout layer and three one-dimensional convolutional lay-

ers are applied. Blue values in Fig. 1, 16 and 32, are re-

spectively the height of coarse attention and the channel

reduction ratio r, which are our hyper-parameters. All the

hyperparameters can be found in our code.

Baseline architecture Fig. 2 shows detailed architecture

of the baseline model, which is based on DeepLabv3+.

As an encoder-decoder architecture, low-level features ob-

tained from ResNet stage 1 are concatenated to high-level

features via skip-connection. An auxiliary loss proposed in

PSPNet [4] is applied to facilitate the learning process of

deep networks. To adopt the auxiliary loss, additional con-

volutional layers are added after ResNet stage 3 as an auxil-

iary branch. The loss for this auxiliary branch has a weight

of 0.4. The output stride is set to 8 as shown in blue color;

this can be set differently, e.g., 16.
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Figure 2: Detailed architecture of the baseline model

A.4. Height and widthwise class distribution

As shown in Fig. 3, the width-wise class distributions

are relatively similar across columns than the height-wise

ones are, so it would be relatively difficult to extract dis-

tinct information with respect to the horizontal position of

an image. Also, empirically, no meaningful performance in-

crease has been observed when using the attention networks

exploiting a width-wise class distribution.

This clear pattern corroborates the rationale behind the

idea of HANet that extracts and incorporates height-wise
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Figure 3: Comparison of a height-wise and a width-wise class dis-

tributions. A darker color indicates a higher probability (more pix-

els) assigned to a particular class (from 0 to 18). The height-wise

class distributions show distinct patterns across vertical positions

while it is not the case for width-wise ones. Normalized distribu-

tions of each class are presented on the right column.

contextual information rather than the width-wise one.

A.5. Perclass IoU and segmentation maps

We present per-class IoU and segmentation maps to an-

alyze HANet qualitatively and quantitatively.

Comparison to baseline. Table 3 shows the per-class IoU

and mIoU results to compare the baseline and our methods

in detail. Compared to the baseline, all the classes show

similar or improved results; up to 7.3% IoU increase is

observed. Qualitatively, ours can properly distinguish in-

dividual objects, even between the classes much alike to

each other (Figs. 4 and 5). From our result in Fig. 4(a) and

Fig. 5(a)-(c), one can see that the train, trucks, or cars in

a far, crowded region are properly predicted by ours, even

if similar vehicles are found nearby. Also, vegetation is ac-

curately distinguished from terrain in ours, compared to the

baseline (Fig. 4(b)). Another interesting examples are found

in Fig. 5(e)-(f); the poles are connected fully in ours but

dotted or missed in the baseline. We conjecture that HANet

helps to distinguish confusing classes by properly gating the

activation maps using height-wise contextual information

based on their vertical positions. To summarize, compared

to the baseline, our method generally forms a clear bound-

ary of a object while avoiding its unnecessary fragmentation

into multiple pieces.
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Figure 4: Comparison of predicted segmentation maps: (a) truck, bus, and car. (b) vegetation and terrain. (c) motorcycle and bicycle. (d)

fence and vegetation.



Image Ground-truth Ours Baseline
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road swalk build wall fence pole tlight tsign veg terrain

sky person rider car truck bus train mcycle bicycle unlabel

Figure 5: Comparison of predicted segmentation maps: (a) truck and car. (b) car and truck. (c) bus and car. (d) building and fence. (e) sky

and building; pole and building. (f) pole and building.
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