
Figure 1. Examples from our newly collected AFHQ dataset.

A. The AFHQ dataset

We release a new dataset of animal faces, Animal Faces-
HQ (AFHQ), consisting of 15,000 high-quality images at
512 × 512 resolution. Figure 1 shows example images of
the AFHQ dataset. The dataset includes three domains of
cat, dog, and wildlife, each providing 5000 images. By hav-
ing multiple (three) domains and diverse images of various
breeds (≥ eight) per each domain, AFHQ sets a more chal-
lenging image-to-image translation problem. For each do-
main, we select 500 images as a test set and provide all re-
maining images as a training set. We collected images with
permissive licenses from the Flickr1 and Pixabay2 websites.
All images are vertically and horizontally aligned to have
the eyes at the center. The low-quality images were dis-
carded by human effort. We have made dataset available
at https://github.com/clovaai/stargan-v2.

B. Training details

For fast training, the batch size is set to eight and the
model is trained for 100K iterations. The training time is
about three days on a single Tesla V100 GPU with our im-
plementation in PyTorch [19]. We set λsty = 1, λds = 1,
and λcyc = 1 for CelebA-HQ and λsty = 1, λds = 2, and
λcyc = 1 for AFHQ. To stabilize the training, the weight
λds is linearly decayed to zero over the 100K iterations. We
adopt the non-saturating adversarial loss [2] with R1 reg-
ularization [15] using γ = 1. We use the Adam [12] op-
timizer with β1 = 0 and β2 = 0.99. The learning rates
for G,D, and E are set to 10−4, while that of F is set to
10−6. For evaluation, we employ exponential moving av-
erages over parameters [10, 23] of all modules except D.
We initialize the weights of all modules using He initial-
ization [3] and set all biases to zero, except for the biases
associated with the scaling vectors of AdaIN that are set to
one.

1https://www.flickr.com
2https://www.pixabay.com

C. Evaluation protocol

This section provides details for the evaluation metrics
and evaluation protocols used in all experiments.

Frechét inception distance (FID) [5] measures the dis-
crepancy between two sets of images. We use the feature
vectors from the last average pooling layer of the ImageNet-
pretrained Inception-V3 [21]. For each test image from a
source domain, we translate it into a target domain using 10
latent vectors, which are randomly sampled from the stan-
dard Gaussian distribution. We then calculate FID between
the translated images and training images in the target do-
main. We calculate the FID values for every pair of image
domains (e.g. female � male for CelebA-HQ) and report
the average value. Note that, for reference-guided synthesis,
each source image is transformed using 10 reference images
randomly sampled from the test set of a target domain.

Learned perceptual image patch similarity (LPIPS) [24]
measures the diversity of generated images using the L1

distance between features extracted from the ImageNet-
pretrained AlexNet [13]. For each test image from a source
domain, we generate 10 outputs of a target domain using
10 randomly sampled latent vectors. Then, we compute the
average of the pairwise distances among all outputs gen-
erated from the same input (i.e. 45 pairs). Finally, we re-
port the average of the LPIPS values over all test images.
For reference-guided synthesis, each source image is trans-
formed using 10 reference images to produce 10 outputs.

D. Additional results

We provide additional reference-guided image synthesis
results on both CelebA-HQ and AFHQ (Figure 2 and 3). In
CelebA-HQ, StarGAN v2 synthesizes the source identity in
diverse appearances reflecting the reference styles such as
hairstyle, makeup, and beard. In AFHQ, the result images
follow the breed and hair of the reference images preserving
the pose of the source images. Interpolation results between
styles can be found in the accompanying videos.

https://github.com/clovaai/stargan-v2


Fe
m
al
e

M
al
e

Reference
So
ur
ce

Figure 2. Reference-guided image synthesis results on CelebA-HQ. The source and reference images in the first row and the first column
are real images, while the rest are images generated by our proposed model, StarGAN v2. Our model learns to transform a source image
reflecting the style of a given reference image. High-level semantics such as hairstyle, makeup, beard and age are followed from the
reference images, while the pose and identity of the source images are preserved. Note that the images in each column share a single
identity with different styles, and those in each row share a style with different identities.



C
a
t

W
il
d

li
fe

Reference

S
o
u
rc

e

D
o
g

Figure 3. Reference-guided image synthesis results on AFHQ. All images except the sources and references are generated by our proposed
model, StarGAN v2. High-level semantics such as hair are followed from the references, while the pose of the sources are preserved.



E. Network architecture

In this section, we provide architectural details of Star-
GAN v2, which consists of four modules described below.

Generator (Table 1). Our generator consists of four down-
sampling blocks, four intermediate blocks, and four up-
sampling blocks, all of which inherit pre-activation resid-
ual units [4]. We use the instance normalization (IN) [22]
and the adaptive instance normalization (AdaIN) [6, 11]
for down-sampling and up-sampling blocks, respectively. A
style code is injected into all AdaIN layers, providing scal-
ing and shifting vectors through learned affine transforma-
tions. We use the average pooling for down-sampling and
the nearest-neighbor interpolation for up-sampling. We do
not use the hyperbolic tangent as an output activation and
let the model to learn the output color range.

Mapping network (Table 2). Our mapping network con-
sists of an MLP with K output branches, where K indicates
the number of domains. Four fully connected layers are
shared among all domains, followed by four specific fully
connected layers for each domain. We set the dimensions
of the latent code, the hidden layer, and the style code to
16, 512, and 64, respectively. We sample the latent code
from the standard Gaussian distribution. We do not apply
the pixel normalization [11] to the latent code, which has
been observed not to increase model performance in our
tasks. We also tried feature normalizations [1, 8], but this
degraded performance.

Style encoder (Table 3). Our style encoder consists of a
CNN with K output branches, where K is the number of do-
mains. Six pre-activation residual blocks are shared among
all domains, followed by one specific fully connected layer
for each domain. We do not use the global average pool-
ing [7] to extract fine style features of a given reference im-
age. The output dimension “D” in Table 3 is set to 64, which
indicates the dimension of the style code.

Discriminator (Table 3). Our discriminator is a multi-task
discriminator [15], which contains multiple linear output
branches 3. The discriminator contains six pre-activation
residual blocks with leaky ReLU [14]. We use K fully-
connected layers for real/fake classification of each domain,
where K indicates the number of domains. The output di-
mension “D” is set to 1 for real/fake classification. We do
not use any feature normalization techniques [8, 22] nor
PatchGAN [9] as they have been observed not to improve
output quality. We have observed that in our settings, the
multi-task discriminator provides better results than other
types of conditional discriminators [16, 17, 18, 20].

3The original implementation of the multi-task discriminator can be
found at https://github.com/LMescheder/GAN_stability.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 256 × 256 × 3

Conv1×1 - - 256 × 256 × 64
ResBlk AvgPool IN 128 × 128 × 128
ResBlk AvgPool IN 64 × 64 × 256
ResBlk AvgPool IN 32 × 32 × 512
ResBlk AvgPool IN 16 × 16 × 512

ResBlk - IN 16 × 16 × 512
ResBlk - IN 16 × 16 × 512
ResBlk - AdaIN 16 × 16 × 512
ResBlk - AdaIN 16 × 16 × 512

ResBlk Upsample AdaIN 32 × 32 × 512
ResBlk Upsample AdaIN 64 × 64 × 256
ResBlk Upsample AdaIN 128 × 128 × 128
ResBlk Upsample AdaIN 256 × 256 × 64
Conv1×1 - - 256 × 256 × 3

Table 1. Generator architecture.

TYPE LAYER ACTVATION OUTPUT SHAPE

Shared Latent z - 16

Shared Linear ReLU 512
Shared Linear ReLU 512
Shared Linear ReLU 512
Shared Linear ReLU 512

Unshared Linear ReLU 512
Unshared Linear ReLU 512
Unshared Linear ReLU 512
Unshared Linear - 64

Table 2. Mapping network architecture.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 256 × 256 × 3

Conv1×1 - - 256 × 256 × 64
ResBlk AvgPool - 128 × 128 × 128
ResBlk AvgPool - 64 × 64 × 256
ResBlk AvgPool - 32 × 32 × 512
ResBlk AvgPool - 16 × 16 × 512
ResBlk AvgPool - 8 × 8 × 512
ResBlk AvgPool - 4 × 4 × 512

LReLU - - 4 × 4 × 512
Conv4×4 - - 1 × 1 × 512
LReLU - - 1 × 1 × 512

Reshape - - 512
Linear * K - - D * K

Table 3. Style encoder and discriminator architectures. D and K
represent the output dimension and number of domains, respec-
tively.

https://github.com/LMescheder/GAN_stability


References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.

In arXiv preprint, 2016. 4
[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial networks. In NeurIPS, 2014. 1

[3] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In ICCV, 2015. 1

[4] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In ECCV, 2016. 4

[5] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In NeurIPS, 2017. 1

[6] X. Huang and S. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. In ICCV, 2017.
4

[7] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal
unsupervised image-to-image translation. In ECCV, 2018. 4

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 4

[9] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial nets. In CVPR, 2017.
4

[10] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of GANs for improved quality, stability, and varia-
tion. In ICLR, 2018. 1

[11] T. Karras, S. Laine, and T. Aila. A style-based generator
architecture for generative adversarial networks. In CVPR,
2019. 4

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015. 1

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NeurIPS, 2012. 1

[14] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In ICML,
2013. 4

[15] L. Mescheder, S. Nowozin, and A. Geiger. Which training
methods for gans do actually converge? In ICML, 2018. 1, 4

[16] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. In arXiv preprint, 2014. 4

[17] T. Miyato and M. Koyama. cGANs with projection discrim-
inator. In ICLR, 2018. 4

[18] A. Odena, C. Olah, and J. Shlens. Conditional image synthe-
sis with auxiliary classifier gans. In ICML, 2017. 4

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. In NeurIPSW, 2017. 1

[20] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee. Generative adversarial text to image synthesis. In
ICML, 2016. 4

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR, 2016. 1

[22] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. In arXiv
preprint, 2016. 4

[23] Y. Yazıcı, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and
V. Chandrasekhar. The unusual effectiveness of averaging in
gan training. In ICLR, 2019. 1

[24] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In CVPR, 2018. 1


