
Supplementary Material for
Task Agnostic Robust Learning on Corrupt Outputs

by Correlation-Guided Mixture Density Networks

Sungjoon Choi
Kakao Brain

sam.choi@kakaobrain.com

Sanghoon Hong
Kakao Brain

sanghoon.hong@kakaobrain.com

Kyungjae Lee
Seoul National University

kyungjae.lee@rllab.snu.ac.kr

Sungbin Lim
UNIST

sungbin@unist.ac.kr

In this supplementary material, we provide full proofs of theorems. We also elaborate the details of conducted experiments
with additional illustrative figures and results.

A. Proof of Theorem in Section 3
In this appendix, we introduce fundamental theorems which lead to Cholesky transform for given random variables (W,Z).

We apply this transform to random matrices W and Z which carry out weight matrices for prediction and a supplementary role,
respectively. We also elaborate the details of conducted experiments with additional illustrative figures and results. Particularly,
we show additional classification experiments with the MNST dataset on different noise configurations.

Lemma 1. Let W and Z be uncorrelated random variables such that{
EW = µW , V (W) = σ2

W

EZ = 0, V (Z) = σ2
Z

(1)

For a given −1 ≤ ρ ≤ 1, set

Z̃ = ρ
σZ
σW

(W − µW) +
√

1− ρ2Z (2)

Then EZ̃ = 0, V(Z̃) = σ2
Z , and Corr(W, Z̃) = ρ.

Proof. Since W and Z are uncorrelated, we have

E [(W − µW)Z] = E(W − µW)EZ = 0 (3)

By (1), we directly obtain
EZ̃ = ρ

σZ
σW

(EW − µW) + EZ = 0

Also, by (1) and (3),

V
(
Z̃
)

= E|Z̃|2 = ρ2
(
σZ
σW

)2

V(W) + V(Z) + 2ρ
σZ
σW

E [(W − µW)Z]︸ ︷︷ ︸
=0

= ρ2
σ2
Z

σ2
W

σ2
W + (1− ρ2)σ2

Z = σ2
Z

1

Similarly,

Cov(W, Z̃) = E
[
(W − µW)Z̃

]
= E

[
(W − µW)ρ

σZ
σW

(W − µW)

]
+ E [(W − µW)Z]︸ ︷︷ ︸

=0

= ρ
σZ
σW

V(W) = ρσZσW

Therefore

Corr(W, Z̃) =
Cov(W, Z̃)√
V(W)

√
V(Z̃)

=
ρσWσZ
σWσZ

= ρ

The lemma is proved.

Lemma 2. Assume the same condition in Lemma 1 and define Z̃ as (2). For given functions ϕ : R→ R and ψ : R→ (0,∞),
set W̃ := ϕ(ρ) + ψ(ρ)Z̃. Then

EW̃ = ϕ(ρ), V(W̃) = |ψ(ρ)|2σ2
Z , Corr(W, W̃) = ρ

Proof. Note that
µW̃ = ϕ(ρ) + ψ(ρ)µZ̃ = ϕ(ρ)

σ2
W̃

= |ψ(ρ)|2 E
(
Z̃ − µZ̃

)2
= ψ2(ρ)σ2

Z

Therefore, by Lemma 1

E
[
(W − µW)(W̃ − µW̃)

]
= ψ(ρ)E

[
(W − µW)(Z̃ − µZ̃)

]
= ρψ(ρ)σWσZ

Hence

Corr(W, W̃) =
E
[
(W − µW)(W̃ − µW̃)

]
σWσW̃

=
ρψ(ρ)σWσZ
ψ(ρ)σWσZ

= ρ

The lemma is proved.

Now we prove the aforementioned theorem in Section 3.

Theorem. Let ρ = (ρ1, . . . , ρK) ∈ RK . For p ∈ {1, 2}, random matrices W(p) ∈ RK×Q are given such that for every
k ∈ {1, . . . ,K},

Cov
(
W

(p)
ki ,W

(p)
kj

)
= σ2

pδij , Cov
(
W

(1)
ki ,W

(2)
kj

)
= ρkσ1σ2δij (4)

Given h = (h1, . . . , hQ) ∈ RQ, set y(p) = W(p)h for each p ∈ {1, 2}. Then an elementwise correlation between y(1)

and y(2) equals ρ i.e.
Corr

(
y
(1)
k , y

(2)
k

)
= ρk, ∀k ∈ {1, . . . ,K}

Proof. First we prove that for p ∈ {1, 2} and k ∈ {1, . . . ,K}

V
(
y
(p)
k

)
= σ2

p ‖h‖
2 (5)

2

Note that

V
(
y
(p)
k

)
= E

(Q∑
i=1

W
(p)
ki hi − E

[
Q∑
i=1

W
(p)
ki hi

])2

= E

(Q∑
i=1

(
W

(p)
ki − EW (p)

ki

)
hi

)2

= E

 Q∑
i,j

(
W

(p)
ki − EW (p)

ki

)(
W

(p)
kj − EW (p)

kj

)
hihj

=

Q∑
i,j

Cov(W
(p)
ki ,W

(p)
kj)hihj

By (4),

V
(
y
(p)
k

)
=

Q∑
i,j

Cov(W
(p)
ki ,W

(p)
kj)hihj =

Q∑
i,j

σ2
phihjδij =

Q∑
i=1

σ2
ph

2
i = σ2

p‖h‖2

so (5) is proved. Next we prove
Cov(y

(1)
k , y

(2)
k) = ρkσ1σ2 ‖h‖2 (6)

Observe that

Cov(y
(1)
k , y

(2)
k) = E

[(
y
(1)
k − Ey(1)k

)(
y
(2)
k − Ey(2)k

)]
= E

(Q∑
i=1

W
(1)
ki hi − E

[
Q∑
i=1

W
(1)
ki hi

]) Q∑
j=1

W
(2)
kj hj − E

 Q∑
j=1

W
(2)
kj hj

= E

 Q∑
i,j

(
W

(1)
ki − EW (1)

ki

)(
W

(2)
kj − EW (2)

kj

)
hihj

=

Q∑
i,j

Cov(W
(1)
ki ,W

(2)
kj)hihj

Similarly,

Cov(y
(1)
k , y

(2)
k) =

Q∑
i,j

Cov(W
(1)
ki ,W

(2)
kj)hihj =

Q∑
i,j

ρkσ1σ2hihjδij = ρkσ1σ2 ‖h‖2

Hence (6) is proved. Therefore by (5) and (6)

Corr(y(1)k , y
(2)
k) =

Cov(y
(1)
k , y

(2)
k)√

V(y
(1)
k)

√
V(y

(2)
k)

=
ρkσ1σ2 ‖h‖2√

σ2
1 ‖h‖

2
√
σ2
2 ‖h‖

2
= ρk

The theorem is proved.

Remark. Recall the definition of Cholesky transform: for −1 < ρ < 1

T(ρ,µW ,σW ,σZ)(w, z) := ρµW +
√

1− ρ2
(
ρ
σZ
σW

(w − µW) +
√

1− ρ2z
)

(7)

3

Table 1: The RMSEs of compared methods on synthetic toy examples

Outliers ChoiceNet MLP GPR LGPR RGPR MDN

0% 0.034 0.039 0.008 0.022 0.017 0.028
20% 0.022 0.413 0.280 0.206 0.013 0.087
40% 0.018 0.452 0.447 0.439 1.322 0.565
60% 0.023 0.636 0.602 0.579 0.738 0.645
80% 0.084 0.829 0.779 0.777 1.523 0.778

Note that we do not assume W and Z should follow typical distributions. Hence every above theorems hold for general class
of random variables. Additionally, by Theorem 2 and (7), W̃ has the following ρ-dependent behaviors;

EW̃ →

µW : ρ→ 1

0 : ρ→ 0

−µW : ρ→ −1

, V(W̃)→

{
0 : ρ→ ±1

σ2
Z : ρ→ 0

Thus strongly correlated weights W̃ i.e. ρ ≈ 1, provide prediction with confidence while uncorrelated weights encompass
uncertainty. These different behaviors of weights perform regularization and preclude over-fitting caused by bad data since
uncorrelated and negative correlated weights absorb vague and outlier pattern, respectively.

B. More Experiments
B.1. Regression Tasks

We conduct three regression experiments: 1) a synthetic scenario where the training dataset contains outliers sampled
from other distributions, 2) using a Boston housing dataset with synthetic outliers, 3) a behavior cloning scenario where the
demonstrations are collected from both expert and adversarial policies.

Synthetic Example We first apply ChoiceNet to a simple one-dimensional regression problem of fitting f(x) = cos(π2x) exp(−(x2)2)
where x ∈ [−3,+3] as shown in Figure 1. ChoiceNet is compared with a naive multilayer perceptron (MLP), Gaussian
process regression (GPR) [10], leveraged Gaussian process regression (LGPR) with leverage optimization [3], and robust
Gaussian process regression (RGPR) with an infinite Gaussian process mixture model [11] are also compared. ChoiceNet
has five mixtures and it has two hidden layers with 32 nodes with a ReLU activation function. For the GP based methods,
we use a squared-exponential kernel function and the hyper-parameters are determined using a simple median trick [4]1. To
evaluate its performance in corrupt datasets, we randomly replace the original target values with outliers whose output values
are uniformly sampled from −1 to +3. We vary the outlier rates from 0% (clean) to 80% (extremely noisy).

Table 1 illustrates the RMSEs (root mean square errors) between the reference target function and the fitted results of
ChoiceNet and other compared methods. Given an intact training dataset, all the methods show stable performances in that the
RMSEs are all below 0.1. Given training datasets whose outlier rates exceed 40%, however, only ChoiceNet successfully fits
the target function whereas the other methods fail as shown in Figure 1.

Boston Housing Dataset Here, we used a real world dataset, a Boston housing price dataset, and checked the robustness of
the proposed method and compared with standard multi-layer perceptrons with four different types of loss functions: standard
L2-loss, L1-loss which is known to be robust to outliers, a robust loss (RL) function proposed in [1], and a leaky robust loss
(LeakyRL) function. We further implement the leaky version of [1] in that the original robust loss function with Tukey’s
biweight function discards the instances whose residuals exceed certain threshold.

Behavior Cloning Example In this experiment, we apply ChoiceNet to behavior cloning tasks when given demonstrations
with mixed qualities where the proposed method is compared with a MLP and a MDN in two locomotion tasks: HalfCheetah
and Walker2d. The network architectures are identical to those in the synthetic regression example tasks. To evaluate the
robustness of ChoiceNet, we collect demonstrations from both an expert policy and an adversarial policy where two policies are

1 A median trick selects the length parameter of a kernel function to be the median of all pairwise distances between training data.

4

Figure 1: Reference function and fitting results of compared methods on different outlier rates, 0%,20% 40%, 80%, and 90%).

Table 2: The RMSEs of compared methods on the Boston Housing Dataset

Outliers ChoiceNet L2 L1 RL LeakyRL MDN

0% 3.29 3.22 3.26 4.28 3.36 3.46
10% 3.99 5.97 5.72 6.36 5.71 6.5
20% 4.77 7.51 7.16 8.08 7.08 8.62
30% 5.94 9.04 8.65 10.54 8.67 8.97
40% 6.80 9.88 9.69 10.94 9.68 10.44

Table 3: Average returns of compared methods on behavior cloning problems using MuJoCo

Outliers
HalfCheetah Walker2d

ChoiceNet MDN MLP ChoiceNet MDN MLP

10% 2068.14 192.53 852.91 2754.08 102.99 537.42
20% 1498.72 675.94 372.90 1887.73 95.29 1155.80
30% 2035.91 363.08 971.24 -267.10 -260.80 -728.39

5

Figure 2: Resulting trajectories of compared methods trained with mixed demonstrations. (best viewed in color).

Table 4: Collision rates of compared methods on straight lanes.

Outliers ChoiceNet MDN MLP GPR LGPR RGPR

0% 0% 50.83% 0% 0.83% 4.17% 3.33%
10% 0% 38.33% 0% 2.5% 1.67% 4.17%
20% 0% 41.67% 0% 7.5% 6.67% 10%
30% 0% 66.67% 1.67% 4.17% 1.67% 7.5%
40% 0.83% 35% 3.33% 6.67% 6.67% 24.17%

Table 5: Root mean square lane deviation distances (m) of compared methods on straight lanes.

Outliers ChoiceNet MDN MLP GPR LGPR RGPR

0% 0.314 0.723 0.300 0.356 0.349 0.424
10% 0.352 0.387 0.438 0.401 0.446 0.673
20% 0.349 0.410 0.513 0.418 0.419 0.725
30% 0.368 0.368 0.499 0.455 0.476 0.740
40% 0.370 0.574 0.453 0.453 0.453 0.636

trained by solving the corresponding reinforcement learning problems using the state-of-the-art proximal policy optimization
(PPO) [13]. For training adversarial policies for both tasks, we flip the signs of the directional rewards so that the agent gets
incentivized by going backward. We evaluate the performances of the compared methods using 500 state-action pairs with
different mixing ratio and measure the average return over 100 consecutive episodes. The results are shown in Table 3. In
both cases, ChoiceNet outperforms compared methods by a significant margin. Additional behavior cloning experiments for
autonomous driving can be found in the supplement material.

Autonomous Driving Experiment In this experiment, we apply ChoiceNet to a autonomous driving scenario in a simulated
environment. In particular, the tested methods are asked to learn the policy from driving demonstrations collected from both
safe and careless driving modes. We use the same set of methods used for the previous task. The policy function is defined as
a mapping between four dimensional input features consist of three frontal distances to left, center, and right lanes and lane
deviation distance from the center of the lane to the desired heading. Once the desired heading is computed, the angular velocity
of a car is computed by 10 ∗ (θdesired − θcurrent) and the directional velocity is fixed to 10m/s. The driving demonstrations are
collected from keyboard inputs by human users. The objective of this experiment is to assess its performance on a training set
generated from two different distributions. We would like to note that this task does not have a reference target function in that
all demonstrations are collected manually. Hence, we evaluated the performances of the compared methods by running the
trained policies on a straight track by randomly deploying static cars.

Table 4 and Table 5 indicate collision rates and RMS lane deviation distances of the tested methods, respectively, where the
statistics are computed from 50 independent runs on the straight lane by randomly placing static cars as shown in Figure 2.
ChoiceNet clearly outperforms compared methods in terms of both safety (low collision rates) and stability (low RMS lane
deviation distances).

Here, we describe the features used for the autonomous driving experiments. As shown in the manuscript, we use a four

6

Figure 3: Descriptions of the featrues of an ego red car used in autonomous driving experiments.

(a) (b)

Figure 4: Manually collected trajectories of (a) safe driving mode and (b) careless driving mode. (best viewed in color).

dimensional feature, a lane deviation distance of an ego car, and three frontal distances to the closest car at left, center, and
right lanes as shown in Figure 3. We upperbound the frontal distance to 40m. Figure 4(a) and 4(b) illustrate manually collected
trajectories of a safe driving mode and a careless driving mode.

B.2. Classification Tasks

Here, we conduct comprehensive classification experiments using MNIST, CIFAR-10, and Large Movie Review datasets
to evaluate the performance of ChoiceNet on corrupt labels. For the image datasets, we followed two different settings to
generate noisy datasets: one following the setting in [15] and the other from [5] which covers both symmetric and asymmetric
noises. For the Large Movie Review dataset, we simply shuffle the labels to the other in that it only contains two labels.

MNIST For MNIST experiments, we randomly shuffle a percentage of the labels with the corruption probability p from
50% to 95% and compare median accuracies after five runs for each configuration following the setting in [15].

We construct two networks: a network with two residual blocks [6] with 3× 3× 64 convolutional layers followed by a
fully-connected layer with 256 output units (ConvNet) and ChoiceNet with the same two residual blocks followed by the
MCDN block (ConvNet+CN). We train each network for 50 epochs with a fixed learning rate of 1e-5.

We train each network for 300 epochs with a minibatch size of 256. We begin with a learning rate of 0.1, and it decays by
1/10 after 150 and 225 epochs. We apply random horizontal flip and random crop with 4−pixel-padding and use a weight
decay of 0.0001 for the baseline network as [6].

The classification results are shown in Table 6 where ChoiceNet consistently outperforms ConvNet and ConvNet+Mixup
by a significant margin, and the difference between the accuracies of ChoiceNet and the others becomes more clear as the
corruption probability increases.

Here, we also present additional experimental results using the MNIST dataset on following three different scenarios:

1. Biased label experiments where we randomly assign the percentage of the training labels to label 0.

2. Random shuffle experiments where we randomly replace the percentage of the training labels from the uniform
multinomial distribution.

3. Random permutation experiments where we replace the percentage of the labels based on the label permutation matrix
where we follow the random permutation in [12].

The best and final accuracies on the intact test dataset for biased label experiments are shown in Table 7. In all corruption
rates, ChoiceNet achieves the best performance compared to two baseline methods. The learning curves of the biased label

7

Table 6: Test accuracies on the MNIST datasets with corrupt labels.

Corruption p Configuration Best Last

50%
ConvNet 95.4 89.5
ConvNet+Mixup 97.2 96.8
ConvNet+CN 99.2 99.2
MDN 97.7 97.7

80%
ConvNet 86.3 76.9
ConvNet+Mixup 87.2 87.2
ConvNet+CN 98.2 97.6
MDN 85.2 78.7

90%
ConvNet 76.1 69.8
ConvNet+Mixup 74.7 74.7
ConvNet+CN 94.7 89.0
MDN 61.4 50.2

95%
ConvNet 72.5 64.4
ConvNet+Mixup 69.2 68.2
ConvNet+CN 88.5 80.0
MDN 31.2 25.9

Table 7: Test accuracies on the MNIST dataset with biased label.

Corruption p Configuration Best Last

25%
ConvNet 95.4 89.5
ConvNet+Mixup 97.2 96.8
ChoiceNet 99.2 99.2

40%
ConvNet 86.3 76.9
ConvNet+Mixup 87.2 87.2
ChoiceNet 98.2 97.6

45%
ConvNet 76.1 69.8
ConvNet+Mixup 74.7 74.7
ChoiceNet 94.7 89.0

47%
ConvNet 72.5 64.4
ConvNet+Mixup 69.2 68.2
ChoiceNet 88.5 80.0

experiments are depicted in Figure 5. Particularly, we observe unstable learning curves regarding the test accuracies of
ConvNet and Mixup. As training accuracies of such methods show stable learning behaviors, this can be interpreted as the
networks are simply memorizing noisy labels. In the contrary, the learning curves of ChoiceNet show stable behaviors which
clearly indicates the robustness of the proposed method.

The experimental results and learning curves of the random shuffle experiments are shown in Table 8 and Figure 6. The
convolutional neural networks trained with Mixup show robust learning behaviors when 80% of the training labels are
uniformly shuffled. However, given an extremely noisy dataset (90% and 95%), the test accuracies of baseline methods
decrease as the number of epochs increases. ChoiceNet shows outstanding robustness to the noisy dataset in that the test
accuracies do not drop even after 50 epochs for the cases where the corruption rates are below 90%. For the 95% case, however,
over-fitting is occured in all methods.

Table 9 and Figure 7 illustrate the results of the random permutation experiments. Specifically, we change the labels of
randomly selected training data using a permutation rule: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)→ (7, 9, 0, 4, 2, 1, 3, 5, 6, 8) following [12].
We argue that this setting is more arduous than the random shuffle case in that we are intentionally changing the labels based
on predefined permutation rules.

8

Table 8: Test accuracies on the MNIST dataset with corrupt label.

Corruption p Configuration Best Last

50%
ConvNet 97.1 95.9
ConvNet+Mixup 98.0 97.8
ChoiceNet 99.1 99.0

80%
ConvNet 90.6 79.0
ConvNet+Mixup 95.3 95.1
ChoiceNet 98.3 98.3

90%
ConvNet 76.1 54.1
ConvNet+Mixup 78.6 42.4
ChoiceNet 95.9 95.2

95%
ConvNet 50.2 31.3
ConvNet+Mixup 53.2 26.6
ChoiceNet 84.5 66.0

Table 9: Test accuracies on the MNIST dataset with randomly permutated label.

Corruption p Configuration Best Last

25%
ConvNet 94.4 92.2
ConvNet+Mixup 97.6 97.6
ChoiceNet 99.2 99.2

40%
ConvNet 77.9 71.8
ConvNet+Mixup 84.0 83.0
ChoiceNet 99.2 98.8

45%
ConvNet 68.0 61.4
ConvNet+Mixup 68.9 55.8
ChoiceNet 98.0 97.1

47%
ConvNet 58.2 53.9
ConvNet+Mixup 60.2 53.4
ChoiceNet 92.5 86.1

CIFAR-10 When using the CIFAR-10 dataset, we followed two different settings from [15] and [5] for more comprehensive
comparisons. Note that the setting in [5] incorporates both symmetric and asymmetric noises.

For the first scenario following [15], we apply symmetric noises to the labels and vary the corruption probabilities from
50% to 80%. We compare our method with Mixup [15], VAT [8], and MentorNet [7].2 We adopt WideResNet (WRN) [14]
with 22 layers and a widening factor of 4. To construct ChoiceNet, we replace the last layer of WideResNet with a MCDN
block. We set K = 3, ρmax = 0.95, λreg = 0.0001, and ρk, πk,Σ0 modules consist of two fully connected layers with 64
hidden units and a ReLU activation function. We train each network for 300 epochs with a minibatch size of 256. We begin
with a learning rate of 0.1, and it decays by 1/10 after 150 and 225 epochs. We apply random horizontal flip and random crop
with 4−pixel-padding and use a weight decay of 0.0001 for the baseline network as [6]. To train ChoiceNet, we set the weight
decay rate to 1e− 6 and apply gradient clipping at 1.0.

Table 10 shows the test accuracies of compared methods under different symmetric corruptions probabilities. In all cases,
ConvNet+CN outperforms the compared methods. We would like to emphasize that when ChoiceNet and Mixup [15] are
combined, it achieves a high accuracy of 75% even on the 80% shuffled dataset. We also note that ChoiceNet (without Mixup)
outperforms WideResNet+Mixup when the corruption ratio is over 50% on the last accuracies.

We conduct additional experiments on the CIFAR-10 dataset to better evaluate the performance on both both symmetric
and asymmetric noises following [5]: Pair-45%, Symmetry-50%, and Symmetry-20%. Pair-45% flips 45% of each label to the
next label, e.g., randomly flipping 45% of label 1 to label 2 and label 2 to label 3, and Symmetry-50% randomly assigns 50%

2 We use the authors’ implementations available online.

9

(a) (b)

(c) (d)

Figure 5: Learning curves of compared methods on random bias experiments using MNIST with different noise levels.

Table 10: Test accuracies on the CIFAR-10 datasets with symmetric noises.

Corruption p Configuration Accuarcy (%)

50%

ConvNet 59.3
ConvNet+CN 84.6
ConvNet+Mixup 83.1
ConvNet+Mixup+CN 87.9
MentorNet 49.0
VAT 71.6
MDN 58.6

80%

ConvNet 27.4
ConvNet+CN 65.2
ConvNet+Mixup 62.9
ConvNet+Mixup+CN 75.4
MentorNet 21.4
VAT 16.9
MDN 22.7

of each label to other labels uniformly. We implement the a 9-layer CNN architecture following VAT [8] and Co-teaching [5]
for fair and accurate evaluations and set other configurations such as the network topology and activations to be the same as [5].
We also copied some results in [5] for better comparisons. Here, we compared our method with MentorNet [7], Co-teaching
[5], and F-correction [9].

While our proposed method outperforms all compared methods on the symmetric noise settings, it shows the second best

10

(a) (b)

(c) (d)

Figure 6: Learning curves of compared methods on random shuffle experiments using MNIST with different noise levels.

Table 11: Test accuracies on the CIFAR-10 dataset with by symmetric and asymmetric noises.

Pair-45% sym-50% sym-20%

ChoiceNet 70.3 85.2 91.0
MentorNet 58.14 71.10 80.76
Co-teaching 72.62 74.02 82.32
F-correction 6.61 59.83 59.83
MDN 51.4 58.6 81.4

performance on asymmetric noise settings (Pair-45%). This shows the weakness of the proposed method. In other words,
as Pair-45% assigns 45% of each label to its next label, the MCDN fails to correctly infer the dominant label distributions.
However, we would like to note that Co-teaching [5] is complementary to our method where one can combine these two
methods by using two ChoiceNets and update each network using Co-teaching. However, it is outside the scope of this paper.

Here, we also present detailed learning curves of the CIFAR-10 experiments while varying the noise level from 20% to
80% following the configurations in [15].

Large Movie Review Dataset We also conduct a natural language processing task using a Large Movie Review dataset
which consists of 25, 000 movie reviews for training and 25, 000 reviews for testing. Each movie review (sentences) is mapped
to a 128-dimensional embedding vector using a feed-forward Neural-Net Language Models [2]. We evaluated the robustness
of the proposed method with Mixup [15], VAT [8], and naive MLP baseline by randomly flipping the labels with a corruption
probability p. In all experiments, we used two hidden layers with 128 units and ReLU activations. The test accuracies of the
compared methods are shown in Table 12. ChoiceNet shows the superior performance in the presence of outliers where we

11

(a) (b)

(c) (d)

Figure 7: Learning curves of compared methods on random permutation experiments using MNIST with different noise levels.

Table 12: Test accuracies on the Large Movie Review dataset with different corruption probabilities.

Corruption p 0% 10% 20% 30% 40%

ChoiceNet 79.43 79.50 78.66 77.1 73.98
Mixup 79.77 78.73 77.58 75.85 69.63
MLP 79.04 77.88 75.70 69.05 62.83
VAT 76.40 72.50 69.20 65.20 58.30

observe that the proposed method can be used for NLP tasks as well.

B.3. Ablation Study on MNIST

Above figures show the results of ablation study when varying the number of mixture K and the expected measurement
variance τ−1. Left two figures indicate test accuracies using the MNIST dataset where 90% of train labels are randomly
shuffled and right two figures are RMSEs using a synthetic one-dimensional regression problem in Section 4.1. We observe
that having bigger K is beneficial to the classification accuracies. In fact, the results achieved here with K equals 15 and 20

12

(a) (b)

(c) (d)

Figure 8: Learning curves of compared methods on CIFAR-10 experiments with different noise levels.

are better than the ones reported in the submitted manuscript. τ−1 does not affect much unless it is exceedingly large.

References
[1] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab. Robust optimization for deep regression. In Proc. of the IEEE

International Conference on Computer Vision, pages 2830–2838, 2015.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137–1155, 2003.

[3] S. Choi, K. Lee, and S. Oh. Robust learning from demonstration using leveraged Gaussian processes and sparse
constrained opimization. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA). IEEE, May
2016.

[4] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan, and L. Song. Scalable kernel methods via doubly stochastic
gradients. In Proc. of the Advances in Neural Information Processing Systems, pages 3041–3049, 2014.

[5] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: robust training deep neural
networks with extremely noisy labels. In Proc. of the Advances in Neural Information Processing Systems, 2018.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016.

[7] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Regularizing very deep neural networks on corrupted
labels. arXiv preprint arXiv:1712.05055, 2017.

[8] T. Miyato, S.-i. Maeda, S. Ishii, and M. Koyama. Virtual adversarial training: a regularization method for supervised and
semi-supervised learning. IEEE transactions on pattern analysis and machine intelligence, 2018.

13

[9] G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu. Making deep neural networks robust to label noise: a loss
correction approach. In Proc. of the Conference on Computer Vision and Pattern Recognition, volume 1050, page 22,
2017.

[10] C. E. Rasmussen. Gaussian processes for machine learning. 2006.

[11] C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian process experts. In Advances in Neural Information
Processing Systems, pages 881–888, 2002.

[12] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural networks on noisy labels
with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[14] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.

[15] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In Proc. of
International Conference on Learning Representations, 2017.

14

	. Proof of Theorem in Section 3
	. More Experiments
	. Regression Tasks
	. Classification Tasks
	. Ablation Study on MNIST

