
7. Supplementary Material
A supplementary video summarizing our work is avail-

able on https://youtu.be/FAeWxs0d4_o.

7.1. Notations

Let us recall the following notations from the paper:

• C is the number of classes in the spotting task.

• NF is the number of frames in the chunk considered.

• NGT is the number of ground-truth actions in the chunk
considered.

• Npred is the number of predictions output by the net-
work for the spotting task.

• f is the number of features computed for each class,
for each frame, before the segmentation module (see
Figure 9).

• r is the temporal receptive field of the network (used
in the temporal convolutions).

• Ŷ regroups the spotting predictions of the network, and
has dimension Npred × (2 + C). The first column rep-
resents the confidence scores for the spots, the second
contains the predicted locations, and the other are per-
class classification scores.

• Y encodes the ground-truth action vectors of the chunk
considered, and has dimension NGT × (2 + C).

• Kc
i (i = 1, 2, 3, 4) denotes the context slicing parame-

ters of class c.

We also use the following notations for the layers of a
convolutional neural network:

• FC(n) is a fully connected layer (e.g. in a multi-layer
perceptron) between any vector to a vector of size n.

• ReLU is the rectified linear unit.

• Conv(n, p× q) is a convolutional layer with n kernels
of dimensions p× q.

7.2. Detailed Network Architecture for SoccerNet

The architecture of the network used in the paper for the
action spotting task of SoccerNet [21], as depicted in Fig-
ure 9, is detailed hereafter.

1. Frame feature extractor and temporal CNN. Soc-
cerNet [21] provides three frame feature extractors with
different backbone architectures (I3D, C3D, and ResNet).
Each of them respectively extracts 1024, 4096, and 2048
features that are further reduced to 512 features with a Prin-
cipal Component Analysis (PCA). We use the PCA-reduced

features provided with the dataset as input of our temporal
CNN.

The aim of the temporal CNN is to provide Cf features
for each frame, while mixing temporal information across
the frames. It transforms an input of shape NF × 512 into
an output of shape NF × Cf .

First, each frame is input to a 2-layer MLP to reduce the
dimensionality of the feature vectors of each frame. We de-
sign its architecture as: FC(128) - ReLU - FC(32) - ReLU.
We thus obtain a set of NF × 32 features, which we note
FMLP.

Then, FMLP is input to a spatio-temporal pyramid, i.e.
it is input in parallel to each of the following layers of the
pyramid:

• Conv(8, r/7× 32) - ReLU

• Conv(16, r/3× 32) - ReLU

• Conv(32, r/2× 32) - ReLU

• Conv(64, r × 32) - ReLU

producing 8+ 16+ 32+ 64 = 120 features for each frame,
which are concatenated with FMLP to obtain a set of NF ×
152 features.

Finally, we feed these features to a Conv(Cf, 3 × 152)
layer, which produces a set of NF × Cf features, noted
FTCNN.

2. Segmentation module. This module produces a seg-
mentation score per class for each frame. It transforms
FTCNN into an output of dimension NF × C, through the
following steps:

• Reshape FTCNN to have dimension NF × C × f .

• Use a frame-wise Batch Normalization.

• Activate with a sigmoid so that each frame has, for
each class, a feature vector v ∈ (0, 1)f .

• For each frame, for each class, compute the distance d
between v and the center of the unit hypercube (0, 1)f ,
i.e. a vector composed of 0.5 for its f components.
Hence, d ∈ [0,

√
f/2].

• The segmentation score is obtained as 1 − 2d/
√
f ,

which belongs to [0, 1]. This way, scores close to 1
for a class (i.e. v close to the center of the cube) can
be interpreted as indicating that the frame is likely to
belong to that class.

The segmentation scores ζseg output by the segmentation
module thus has dimensionNF ×C and is assessed through
the segmentation loss Lseg.

3. Spotting module. The spotting module takes as input
FTCNN and ζseg, and outputs the spotting predictions Ŷ of
the network. It is composed of the following layers:

https://youtu.be/FAeWxs0d4_o


Figure 9. Pipeline for action spotting. We propose a network made of a frame feature extractor and a temporal CNN outputting C
class feature vectors per frame, a segmentation module outputting per-class segmentation scores, and a spotting module extracting 2+C
values per spotting prediction (i.e. the confidence score s for the spotting, its location t and a per-class prediction).

• ReLU on FTCNN, then concatenate with ζseg. This re-
sults in NF × (Cf + C) features.

• Temporal max-pooling 3× 1 with a 2× 1 stride.

• Conv(32, 3× (Cf + C)) - ReLU

• Temporal max-pooling 3× 1 with a 2× 1 stride.

• Conv(16, 3× 32) - ReLU

• Temporal max-pooling 3× 1 with a 2× 1 stride.

• Flatten the resulting features, which yields Fspot.

• Feed Fspot to a FC(2Npred) layer, then reshape to
Npred × 2 and use sigmoid activation. This produces
the confidence scores and the predicted locations for
the action spots.

• Feed Fspot to a FC(CNpred) layer, then reshape to
Npred×C and use softmax activation on each row. This
produces the per-class predictions for the action spots.

• Concatenate the confidence scores, predicted loca-
tions, and per-class predictions to produce the spotting
predictions Ŷ of shape Npred × (2 + C).

Eventually, Ŷ is assessed through the action spotting loss
Las.

7.3. Iterative One-to-One Matching

The iterative one-to-one matching between the predicted
locations Ŷ·,2 and the ground-truth locations Y·,2 described
in the paper is illustrated in Figure 10. It is further detailed
mathematically in Algorithm 1.
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Figure 10. Iterative one-to-one matching. Example of the itera-
tive one-to-one matching. At iteration 1, each ground-truth loca-
tion is matched with its closest predicted location (green arrows),
and vice-versa (brown arrows). Locations that match each other
are permanently matched (gray arrows), and the process is re-
peated with the remaining locations at iteration 2. In this case, two
iterations suffice to match all the ground-truth locations with a pre-
dicted location, as evidenced by the absence of available ground-
truth location for iteration 3.

7.4. Details on the Time-Shift Encoding (TSE)

The time-shift encoding (TSE) described in the paper is
further detailed below. We note sc(x) the TSE of frame x
related to class c.

We denote scp (resp. scf ) the difference between the frame
index of x and the frame index of its closest past (resp.



Algorithm 1: Iterative matching between ground-
truth and predicted locations.

Data: Y, Ŷ ground-truth and predicted locations
Result: Matching couples (y, ŷ) ∈ Y × Ŷ
Algorithm:
while Y 6= ∅ do

f : Y → Ŷ : f(y) = argmin{|y − ŷ| : ŷ ∈ Ŷ };
for ŷ ∈ Ŷ do

if |f−1({ŷ})| ≥ 1 then
yŷ = argmin{|y − ŷ| : y ∈ f−1({ŷ})};
Save matching couple (yŷ, ŷ);
Remove yŷ from Y and ŷ from Ŷ ;

end
end

end

Figure 11. Context-aware loss function (close actions). Repre-
sentation of our segmentation loss when two actions of the same
class are close to each other. The loss is parameterized by the
time-shift encoding of the frames and is continuous through time,
except at frames annotated as actions. A video clip where we vary
the location of the second action is provided with this document
(3dloss.mp4).

future) ground-truth action of class c. They constitute the
time-shifts of x from its closest past and future ground-
truth actions of class c, expressed in number of frames (i.e.
if frames 9 and 42 are actions of class c, then frame 29 has
scp = 29−9 = 20 and scf = 29−42 = −13). We set scp = 0
for a frame corresponding to a ground-truth action of class
c, thus ensuring the relations scf < 0 ≤ scp. The TSE sc(x)
is defined as the time-shift among {scp, scf} related to the ac-
tion that has the dominant influence on x. The rules used to
determine which time-shift is selected are the following:

• if scp < Kc
3: keep scp, because x is located just after the

past action, which still strongly influences x.

• if Kc
3 ≤ scp < Kc

4: x is in the transition zone after
the past action, whose influence weakens, thus the de-
cision depends on how far away is the future action:

– if scf ≤ Kc
1: keep scp, because x is located far

before the future action, which does not yet in-
fluence x.

– if scf > Kc
1: The future action may be close

enough to influence x:

∗ if
scp−Kc

3

Kc
4−Kc

3
<

Kc
2−scf

Kc
2−Kc

1
: keep scp, because x

is closer to the just after region of the past
action than it is to the just before region of
the future action, with respect to the size of
the transition zones.

∗ else: keep scf , because the future action in-
fluences x more than the past action.

• if scp ≥ Kc
4: keep scf , because x is located far after the

past action, which does not influence x anymore.

For completeness, let us recall the following details men-
tioned in the main paper. If x is both located far after the
past action and far before the future action, selecting either
of the two time-shifts has the same effect in our loss. Fur-
thermore, for the frames located either before the first or
after the last annotated action of class c, only one time-
shift can be computed and is thus set as sc(x). Finally,
if no action of class c is present in the video, then we set
sc(x) = Kc

1 for all the frames. This induces the same be-
havior in our loss as if they were all located far before their
closest future action.

The TSE is used to shape our novel context-aware loss
function for the temporal segmentation module. The cases
described above ensure the temporal continuity of the loss,
regardless of the proximity between two actions of the same
class, excepted at frames annotated as ground-truth actions.
This temporal continuity can be visualized in Figure 11,
which shows a representation of L̃(p, s) (analogous to Fig-
ure 1) when two actions are close to each other. It is further
illustrated in the video clip 3dloss.mp4 provided with this
document, where we gradually vary the location of the sec-
ond action. For each location of the second action, the TSE
of all the frames is re-computed, and so is the loss.

7.5. Extra Analyses

Per-class results. As for the class goal in Figure 6 of the
main paper, Figures 12 and 13 display the number of TP, FP,
FN and the precision, recall and F1 metrics for the classes
card and substitution as a function of the tolerance δ al-
lowed for the localization of the spots.

Figure 12 shows that most cards can be efficiently spot-
ted by our model within 15 seconds around the ground truth
(δ = 30 seconds). We achieve a precision of 66% for that
tolerance. The previous baseline plateaus within 20 seconds
(δ = 40 seconds) and still has a lower performance.

Figure 13 shows that most substitutions can be efficiently
spotted by our model within 15 seconds around the ground
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Figure 12. Per-class results (cards). A prediction of class card is
a true positive (TP) with tolerance δ when it is located at most
δ/2 seconds from a ground-truth card. The baseline results are
obtained from the best model of [21]. Our model spots most cards
within 15 seconds around the ground truth (δ = 30 seconds).

truth (δ = 30 seconds). We achieve a precision of 73%
for that tolerance. The previous baseline reaches a similar
performance for that tolerance, and reaches 82% within 60
seconds (δ = 120 seconds) around the ground truth.

Except for the precision metric for the substitutions with
tolerances larger than 20 seconds, our model outperforms
the previous baseline of SoccerNet [21]. As mentioned in
the paper, for goals, many visual cues facilitate their spot-
ting, e.g. multiple replays, particular camera views, or cele-
brations from the players and from the public. Cards and
substitutions are more difficult to spot since the moment
the referee shows a player a card and the moment a new
player enters the field to replace another are rarely replayed
(e.g. for cards, the foul is replayed, not the sanction). Also,
the number of visual cues that allow their identification is
reduced, as these actions generally do not lead to celebra-
tions from the players or the public. Besides, cards and
substitutions may not be broadcast in full screen, as they
are sometimes merely shown from the main camera and are
thus barely visible. Finally, substitutions occurring during
the half-time are practically impossible to spot, as said in
the main paper.
Segmentation loss analysis. We provide a supplementary
analysis on the λseg parameter, which balances the segmen-
tation loss and the action spotting loss in Equation 11 of the
main paper. We fix different values of λseg and train a net-
work for each value. We show the segmentation scores on
one game for the goal class in Figure 14. We also display
the Average-mAP for the whole test set for the different val-
ues of λseg.

It appears that extreme values of λseg substantially in-
fluence both the action spotting performance and the seg-
mentation curves, hence the automatic highlights genera-
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Figure 13. Per-class results (substitutions). A prediction of class
substitution is a true positive (TP) with tolerance δ when it is
located at most δ/2 seconds from a ground-truth substitution.
The baseline results are obtained from the best model of [21].
Our model spots most substitutions within 15 seconds around the
ground truth (δ = 30 seconds).

tion. Small values (i.e. λseg ≤ 0.1) produce a useless seg-
mentation for spotting the interesting unannotated goal op-
portunities. This is because the loss does not provide a suffi-
ciently strong feedback for the segmentation task as it does
not penalize enough the segmentation scores. These val-
ues of λseg also lead to a decrease in the Average-mAP for
the action spotting task, as already observed in the ablation
study presented in the main paper. Moreover, very large val-
ues (λseg ≥ 100) penalize too much the unannotated goal
opportunities, for which the network is then forced to out-
put very small segmentation scores. Such actions are thus
more difficult to retrieve for the production of highlights.
These values of λseg also lead to a large decrease in the
Average-mAP for the action spotting task, as the feedback
of the segmentation loss overshadows the feedback of the
spotting loss. Finally, it seems that for λseg ∈ [1, 10], the
spotting performance is high while providing informative
segmentation scores on goal opportunities. These values
lead to the spotting of several goal opportunities, shown in
Figure 14, which might be included in the highlights auto-
matically generated for this match by the method described
in the main paper.
Comments on improvements on ActivityNet. In Table 3,
we report the averages over samples of 20 results for each
metric, that we further analyze statistically below for the
Av.-mAP. First, following D’Agostino’s normality test, we
can reasonably assume that the samples are normally dis-
tributed, since we obtain p-values > 0.1 (0.28 for BMN
and 0.24 for ours respectively). The standard deviations of
the samples are 0.08% and 0.07%. Since the difference
between the averages is 0.38%, the normal distributions
overlap beyond two standard deviations from their centers,



Figure 14. Influence of λseg on the segmentation and spotting
results of the second half of the famous “Remuntada” match,
Barcelona - PSG, for the class goal, for different values of λseg.
The best Average-mAP for the spotting task is located around
λseg = 1.5, while the best value for spotting unannotated goal
opportunities might be around λseg = 10. For this value, several
meaningful goal opportunities have a high segmentation score:
(a) a shot on a goal post, (b) a free kick, (c) lots of dribbles in the
rectangle, and (d) a headshot right above the goal.

which shows that our improvements are beyond noise do-
main. Furthermore, Bartlett’s test for equal variances gives
a p-value of 0.62 (> 0.1), which allows us to use Student’s
t-test to check whether the two samples can be assumed
to have the same mean or not. We obtain a p-value of
2.3× 10−18, which strongly indicates that our results are
significantly different from those of BMN and hence con-
firm the significant improvement. For the AR@100 and
AUC, similar analyses give final p-values of 7.4× 10−3 and
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Figure 15. Extra action spotting and segmentation results.
These results are obtained on the second half of the match
Barcelona - Espanyol in December 2016. Ground truth actions,
temporal segmentation curves, and spotting results (green
stars) are illustrated. Unannotated actions can be identified and
included in the highlights using our segmentation. For example, a
goal opportunity occurs around the 29th minute. A false positive
spot for a card is predicted by our network around the 9th minute.
As it corresponds to a severe unsanctioned foul, it is fine for our
automatic highlights generator to include it in the summary of the
match.

9.8× 10−2, which corroborates the statistical significance
of our improvements.

7.6. Extra Actions and Highlights Generation

Figure 15 shows additional action spotting and segmen-
tation results. We can identify actions that are unannotated
but display high segmentation scores such as goal opportu-
nities and unsanctioned fouls. A goal opportunity around
the 29th minute can be identified through the segmentation
results. Besides, a false positive spot (green star) for a card
is predicted around the 9th minute, further supported by a
high segmentation score. A manual inspection reveals that
a severe unsanctioned foul occurs at this moment. The au-
tomatic highlights generator presented in the main paper
would include it in the summary of the match. Even though
this foul does not lead to a card for the offender, the content
of this sequence corresponds to an interesting action that
would be tolerable in a highlights video.

Figure 16 shows a frame for which our network provides
a high segmentation score and a false positive spot around
the 26th minute (i.e. 71st minute of the match) for substitu-
tions in Figure 7 of the main paper. We can see that the LED
panel used by the referee to announce substitutions is visi-
ble on the frame. This may indicate that the network learns,
quite rightly, to associate this panel with substitutions. As
a matter of fact, at this moment, even the commentator an-
nounces that a substitution is probably imminent.



Figure 16. False positive spot of a substitution for the sec-
ond half of the famous “Remuntada” match, Barcelona - PSG, in
March 2017. The LED panel used to announce substitutions is
visible on the left, which presumably explains why the network
predicted the sequence around this frame as a substitution.


