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In this Supplementary file, we will introduce the atten-
tion block used in our proposed DoveNet in Section 1, an-
alyze our constructed iHarmony4 dataset w.r.t. foreground
ratio, color transfer method, and semantic category in Sec-
tion 2, 3, 4. Besides, We will show samples of manually
filtered images and final images in our dataset in Section 5,
6. Finally, we will exhibit the results of different methods
on all 99 real composite images in Section 7.

1. Details of Attention Block

U-Net utilizes skip-connections to leverage information
from encoder for decoder. Inspired by [11], we leverage at-
tention blocks to enhance U-Net. The detailed structure is
depicted in Fig. 1 (b). We concatenate encoder and decoder
features, based on which full attention maps [13] (integra-
tion of spatial attention and channel attention) are learnt for
encoder feature and decoder feature separately. Specifically,
to obtain encoder attention map and decoder attention map,
we apply 1 × 1 convolution layer on the concatenation of
encoder and decoder features, followed by Sigmoid activa-
tion. After that, we multiply encoder (resp., decoder) at-
tention map to the encoder feature (resp., decoder) feature
element-wisely. We expect the encoder attention map to
pay more attention to the background of encoder feature,
because the foreground of encoder feature may not be fully
harmonized yet. Finally, we concatenate the attended en-
coder feature and decoder feature as the output of attention
block.

Note that in [11], attention maps are learnt for fore-
ground an background separately with explicit mask con-
trol. We argue that since the mask is included in the input
to the generator, the attention block can utilize the mask in-
formation automatically. Compared with [11], our attention
block is simple yet effective.
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2. Analyses of Foreground Ratio

Our iHarmony4 dataset has a wide range of foreground
ratios, i.e., the area of foreground to be harmonized over
the area of the whole image. We report the distribution of
foreground ratios on our four sub-datasets (i.e., HCOCO,
HAdobe5k, HFlickr, Hday2night) and the whole dataset
in Figure 2a, from which we can observe that the fore-
ground ratios are mainly distributed in the range [0%, 70%]
and have a long-tail distribution. We also observe that the
foreground ratios on four sub-datasets are quite different,
which is caused by different acquisition process of four sub-
datasets. Next, we will analyze each sub-dataset separately.

For COCO dataset [6] with provided segmentation
masks, we naturally leverage its segmentation annotation
and ensure that each foreground occupies larger than 1%
and smaller than 80% of the whole image. Since we apply
color transfer methods to generate synthesized composites
and filter out unqualified ones, synthesized composites with
larger foreground regions are more prone to be removed due
to more likely low quality. Thus, our HCOCO sub-dataset
has relatively small foreground regions.

For the other three datasets (i.e., Adobe5k[1], Flickr, and
day2night[4]), there are no segmentation masks, so we have
to manually select and segment one or more foreground
regions in an image. The images in Adobe5k are mostly
taken by professional photographers with a prominent sub-
ject in the image, so it is more likely to select a relatively
large foreground. For the crawled Flickr images, we re-
move those images without obvious foreground and those
with blurred background, and thus the remaining images
are similar to those in Adobe5k. Therefore, our HAdobe5k
and HFlickr sub-datasets have relatively large foreground
regions.

For day2night dataset, as discussed in Section 3.1 in the
main paper, we need to satisfy more constraints to select a
reasonable foreground. Specifically, moving or deformable
objects (e.g., person, animal, car) or objects with essential
changes are not suitable to be chosen as foreground regions.



Figure 1: Illustration of our proposed attention module. (a). original U-Net structure without attention module; (b). U-Net
with our attention module.

(a) Comparison between four sub-datasets (b) Comparison between iHarmony4 and real composites

Figure 2: The distributions of foreground ratios. (a) Comparison between four sub-datasets shows that HCOCO and
Hday2night have more images with small foreground regions while HAdobe5k and HFlickr have more images with large
foreground regions. (b) Comparison between iHarmony and real composites in [12, 9] shows that the distribution of fore-
ground ratios of iHarmony4 dataset is close to that of real composite images.

Hence, we prefer to select static objects that remain con-
sistent across multiple capture conditions, resulting in rela-
tively small foreground regions.

Actually, the composite images in real-world applica-
tions also have a wide range of foreground ratios. We show
the distribution of 99 real composite images (48 images
from Xue et al. [12] and 51 images from Tsai et al. [9])
and compare with our whole dataset in Figure 2b. From
Figure 2b, it can be seen that the distribution of foreground
ratios in our whole dataset is close to that of real composite
images, which means that the foreground ratios of our con-
structed dataset are reasonable for real-world image harmo-
nization tasks.

3. Analyses of Color Transfer Methods

When constructing HCOCO and HFlickr sub-datasets,
we apply color transfer methods to adjust the foreground to
make it incompatible with background.

Existing color transfer methods can be categorized into

parametric and non-parametric methods. Parametric meth-
ods assume the parametric format of the color mapping
function. Assumed parametric format is compact but may
be unreliable. Instead, non-parametric methods have no
parametric format of the color transfer function, and most
of them directly record the mapping of the full range of
color/intensity levels using a look-up table, which is usu-
ally computed from the 2D joint histogram of image feature
correspondences.

From the perspective of color space, existing color trans-
fer methods can be applied to either correlated color space
or decorrelated color space. Typically, images are encoded
using RGB color space, in which three channels (R, G,
B) are highly correlated. This implies that if we want to
change the appearance of a pixel in a coherent way, we
must modify all three color channels. That complicates any
color modification process and may have unpredictable re-
sults [8]. However, by shifting, scaling, and rotating the
axes in RGB color space, we can construct a new color
space (e.g., CIELAB, Yuv, HSV). If different channels in



this new color space are near-independent or independent,
image processing can be done in each channel indepen-
dently. Nonetheless, decorrelated color space may fail to
capture some subtleties including local color information
and interrelation [10].

Based on the abovementioned parametric or non-
parametric methods as well as correlated or decorrelated
color space, existing color transfer methods can be grouped
into four quadrants, and each quadrant has its own advan-
tage and drawback. To enrich the diversity of synthesized
composite images, we choose one representative method in
each quadrant.

Parametric method in decorrelated color space:
Based on global color distribution of two images, Reinhard
et al. [8] proposed a linear transformation in decorrelated
color space Lαβ, by transferring mean and standard devia-
tion between each channel of two images:

Io =
σr

σt
(It − µt) + µr,

where (µt, σt) and (µr, σr) are the mean and standard de-
viation of the target and reference images in Lαβ space,
It and Io are the color distribution of the target and output
images.

Parametric method in correlated color space: Xiao
et al. [10] extended [8] by transferring mean and covari-
ance between images in correlated RGB space. It replaces
the rotation to Lαβ with the axes defined by the principal
components of each image, leading to a series of matrix
transformation:

Io = TrRrSrStRtTtIt,

in which T,R and S denote the matrices of translation, ro-
tation, and scaling derived from the target and reference im-
ages accordingly.

Non-parametric method in decorrelated color space:
Fecker et al. [2] proposed to use cumulative histogram map-
ping in decorrelated color space Y CbCr. They used nearest
neighbor mapping scheme to set the corresponding color
level of the source image to each level of the target. In this
way, the shape of the target histogram can be matched to the
reference histogram, and thus the transferred image has the
same color as the reference.

Non-parametric method in correlated color space:
By treating 3D color distribution as a whole, Pitié et al. [3]
proposed iterative color distribution transfer by matching
3D distribution through an iterative match of 1D projec-
tions. Iterative color distribution transfer can increase the
graininess of the original image, especially if the color dy-
namics of two images are very different. So Pitié et al. [7]
proposed a second stage to reduce the grain artifact through
an efficient post-processing algorithm.

In summary, we adopt four color transfer methods:
global color transfer in Lαβ space [8], global color transfer

in RGB space [10], cumulative histogram matching [2], and
iterative color distribution transfer [7]. When generating
synthetic composite images for HCOCO and HFlickr, we
randomly choose one color transfer method from the above.
By taking HCOCO dataset as an example, after automatic
and manual filtering, the number of remaining composite
images obtained using method [8] [10] [7] [2] are 9581,
8119, 17009, and 8119 respectively, which indicates that
iterative color distribution transfer [7] is better at producing
realistic and reasonable composites.

We split the test set of HCOCO into four subsets ac-
cording to four color transfer methods, and report the re-
sults on four subsets in Table 1. We can see that the
statistics (MSE, PSNR) of input composites obtained by
different color transfer methods are considerably different,
which shows the necessity of applying multiple color trans-
fer methods to enrich the diversity of synthesized composite
images. Moreover, our proposed method achieves the best
results on four subsets, which demonstrates the robustness
of our proposed method.

4. Analyses of Semantic Category
COCO dataset is associated with semantic segmentation

masks, so we can easily obtain the category labels of fore-
ground regions in our HCOCO sub-dataset. To explore the
difference between different categories, we report fMSE
(foreground MSE) of input composites and our harmonized
results on different categories in Table 2, in which Table 2a
(resp., 2b) shows the hard (resp., easy) categories. We de-
fine easy or hard categories based on the relative improve-
ment of our method compared with input composite.

From Table 2, we find that for categories with small
intra-category variance (e.g., mouse, keyboard), fMSE
could be improved significantly, while for categories with
large intra-category variance (e.g., person), the improve-
ment is relatively small.

5. Examples of Manual Filtering
After generating composite images, two steps of auto-

matic filtering and an additional manually filtering are ap-
plied to HCOCO, HFlickr, and Hday2night sub-datasets to
eliminate low-quality synthesized composites. In the step
of manual filtering, we pay close attention to the cases that
are harmful to image harmonization task.

For HCOCO sub-dataset, foreground regions are ob-
tained based on the semantic segmentation annotation pro-
vided in COCO dataset. However, some foreground regions
are highly occluded and not very meaningful for image har-
monization task. For example, in Figure 3a, an occluded
person with only a hand or a shoulder is annotated as “per-
son” in COCO dataset, but it is not very meaningful to har-
monize a highly occluded person.



Color Transfer Methods [8] [10] [7] [2]
Evaluation metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑
Input composite 75.81 33.39 66.84 33.90 73.83 33.73 57.55 34.92

Lalonde and Efros [5] 127.82 30.83 107.44 31.26 110.88 31.04 92.02 31.51
Xue et al. [12] 90.31 32.74 69.97 33.78 74.74 33.26 72.78 33.62
Zhu et al. [14] 84.31 32.62 77.93 33.06 85.36 32.78 67.81 33.89

DIH [9] 57.77 34.32 51.02 34.70 53.90 34.63 42.91 35.21
S2AM [11] 41.89 35.29 37.33 35.81 47.00 34.99 33.93 36.13

Ours 38.21 35.62 34.42 36.17 40.92 35.38 30.51 36.47

Table 1: MSE and PSNR on four sub test sets of HCOCO corresponding to different color transfer methods. The best results
are denoted in boldface.

(a) Composite Images with highly occluded foregrounds.

(b) Composite Images with dramatically changed hues.

(c) Composite Images with essential object changes.

Figure 3: Sample composite images that are discarded during manual filtering. From top to bottom, we show undesirable
examples with highly occluded foregrounds, dramatically changed hues, and essential changes of the objects themselves that
are not caused by capture condition.

Besides, for HCOCO and HFlickr sub-datasets, color
transfer is applied to different foreground objects of the
same category between reference image and target im-
age, so the hue of foreground object may be dramati-
cally changed, especially for the categories with large intra-
category variance like “person”. For example, in Figure 3b,
the shirt color is changed from red in the real image to yel-
low in the composite image. It does not make sense to har-
monize a yellow shirt into a red shirt, so we remove such
images from our dataset.

Furthermore, for Hday2night sub-dataset, when overlay-
ing the foreground from reference image on the target im-

age, some essential changes which are not caused by cap-
ture condition may happen to the foreground object. For ex-
ample, in Figure 3c, the lights of Eiffel Tower are switched
on (see left subfigure) and the snow appears on the roof (see
right subfigure) in the composite image. We argue that these
changes do not belong to the scope of image harmonization
task, and thus filter out these images from our dataset.

By filtering out the unqualified images in the above
cases, we ensure the high quality of our iHarmony4 dataset
to the utmost.



(a) Example images of HCOCO sub-dataset

(b) Example images of HAdobe5k sub-dataset

(c) Example images of HFlickr sub-dataset

(d) Example images of Hday2night sub-dataset

Figure 4: Example images of our contributed dataset iHarmony4. From top to bottom, we show examples from our HCOCO,
HAdobe5k, HFlickr, and Hday2night sub-datasets. From left to right, we show the real image, the synthesized composite
image, and the foreground mask for each example.

baseball
glove

snow-
board kite person

surf-
board

Input 1402.62 570.07 2391.73 428.59 1409.41
DoveNet 1301.21 523.18 1857.24 321.48 972.09

(a) Categories with slightest fMSE improvement.
mouse keyboard oven pizza zebra

Input 1530.63 1624.38 1257.21 1316.40 959.08
DoveNet 423.84 521.24 481.37 532.38 388.66

(b) Categories with largest fMSE improvement.

Table 2: fMSE improvement of different categories of
HCOCO sub-dataset.

6. Examples of Our iHarmony4 Dataset

In Figure 4, we show some examples of our four sub-
datasets with each row corresponding to one sub-dataset.
For each example, we show the original real image, synthe-
sized composite image, and foreground mask.

7. Results on Real Composite Images

In Figure 5 to 15, we present all results of 99 real com-
posite images used in our user study (see Section 5.6 in
the main paper), including 48 images from Xue et al. [12]
and 51 images from Tsai et al. [9]. We compare the real
composite images with harmonization results generated by
our proposed method and other existing methods, including
Lalonde and Efros [5], Xue et al. [12], Zhu et al. [14], DIH
[9], and S2AM [11]. Based on Figure 5 to 15, we can see
that our proposed method could generally produce satisfac-
tory harmonized images across various scenes and objects.
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Figure 6: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 7: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 8: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 9: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 10: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 11: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 12: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 13: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 14: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.



Figure 15: Results on real composite images, including the input composite, five state-of-the-art methods, and our proposed
DoveNet.


