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1. Related work (Minor importance)
The most related work has been discussed in the main

paper Section 2. Here we discuss some additional related
work with minor importance to our work.

Visual Semantic Role Labelling (VSRL) is a task which
goes hand in hand with Situation Recognition. VSRL was
first introduced by Gupta and Malik [2] where they had
annotated MSCOCO [6] dataset for 26 actions and localized
3 roles; agent, object and instrument. Motivation behind
VSRL was to get a thorough understanding about actions
by being able to reason on objects and people related to
it. This vision was brought forward by Yatskar et al. [15]
by introducing a more comprehensive dataset consisting of
504 actions and 190 unique semantic roles extracted from
FrameNet [1].

Grounding semantic roles in images is another related
task. Yang et al. [13] have proposed a method and a dataset
to ground objects in video clips referring to semantic roles
in a given sentence. This differs from our task as we do
not use sentences to first find out verb and labels for its
semantic roles. Silberer and Pinkal [10] have introduced
another semantic role grounding dataset based on Flickr30k
Entities [9] dataset. Their task is to select the most relevant
region for each semantic role of the given frame from a set
of image regions. Our proposed approach can be applied to
this task as well. However we are unable to evaluate as the
dataset is not released to the public.

2. Reasoning enhanced verb prediction -
complete details

We have provided some description for reasoning
enhanced verb prediction in Section 5.2 in the main paper.
Here we provide complete details. We remark that our main
contribution is role prediction (or frame recognition (FR)),
which details have been discussed in Sections 3 and 4 of the
main paper.

In this section we explain complete details about the
TDA based verb prediction model which we report results
in Table 1 row 2 under the title Predicted Query Model in

our main paper.

2.1. Role label prediction component of the Verb
model

TDA model expects a query condition q as we discussed
in Equation 3 of the main paper in order to condition the
image and find the relevant answer for the query. For verb
prediction, we decided to form our query based on labels
of the two most frequent roles in imSitu dataset; Agent and
Place.

We decided to use a modified version of TDA based
FR model to predict Agent and Place role labels, which
are going to be input for our verb model. The reason we
had to modify the original FR model is because, when the
query is encoded in Equation 2 of the main paper, we use
concatenation operation between verb embedding and role
name embedding. However when we want to use this FR
model to provide us label predictions of Agent and Place
roles to input for verb prediction, FR model should have
the capability to process queries which do not have verb
embedding. Since concatenation operation cannot support
this requirement, we replaced the original TDA FR model’s
concatenation in query encoding (Equation 2 - main paper)
to an addition operation as follows:

q = frole q(wv +wr) (1)

During model training, we use Equation 1 and we use
the following after removing the verb embedding during
inference.

q = frole q(wr) (2)

First we train this model separately and this pretrained
FR model is used to predict Agent and Place labels during
verb model training.

2.2. TDA for verb prediction

We use the original TDA model only with slight
modifications for verb prediction task. First we modify the
query encoding step (Equation 2 - main paper) to our new
query condition as follows.
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q verb = fverb q([wagent,wplace]) (3)

[·] is used to denote the concatenation. Embedding vectors
for Agent and Place role labels are wagent,wplace ∈
Rd wemb. These embeddings are randomly initialized and
learnt during model training. agent ∈ {1, . . . , |N |} is the
Agent id and place ∈ {1, . . . , |N |} is the Place id.

Then we use this q verb as our query and continue
with the original TDA model from Equation 3-5 from
the main paper. We observed from our experiments that
normalization layers did not help for verb prediction like
they did with FR. Therefore we did not execute Equation 6
from main paper for verb prediction model. As seen in the
caption of the Table 1 of the main paper, when gold Agent
and Place role labels are used, verb prediction accuracy is
very high. But when we replace them with predicted labels,
performance drops significantly due to the prediction errors
of the FR model. Therefore we understood that completely
relying the model on predicted role labels is unwise as they
are known to be incorrect sometimes.

As a remedy to this, we decided to use hidden
representations of Agent and Place role labels
(hagent,hplace ∈ h) generated in Equation 6 of the
main paper in this reasoning process as well. We use
them as a soft query and fuse them to the original image
encoding to provide more contextual information to support
verb prediction. We generate this contextual information as
follows

soft query = hagent + hplace (4)
Eflat = AvgPool(EI)Wflt img (5)

context = Eflat ◦ soft query (6)

where Wflt img ∈ Rd img×d hidden. Then we add this with
the output from Equation 5 of the main paper to obtain
our final hidden representation (ĥ) that will be sent to the
classifier to get the verb prediction. This is the model we
reported results in our main paper in Table 1 row 2.

ĥ = hu + context (7)

pverb = SoftMax(fv classifier(ĥ)) (8)

We train this model with cross entropy loss as follows.

Loss = −
|V |∑
i=1

yi log(pverb(i)) (9)

yi ∈ {0, 1} is the ground truth encoding of the verb
i. Also note that pverb(i) ∈ pverb. We get the final verb
prediction (vpred) as follows:

vpred = argmax
i

pverb(i) (10)

3. Complete Implementation Details

We implemented our models using PyTorch [8]
framework. We use VGG-16 [11] as our backbone
CNN architecture to encode images following all existing
work [15, 14, 7, 5] for SR. We extract grid features of size
7× 7× 512 after the final max pooling layer as our regions
where Ne = 49. Final dimensions of different components
of our models as follows: d img = 512, d q = 1024,
d wemb = 300, d hidden = 1024, B = 4 and β = 10.
Bias terms in all our equations have not been included for
the simplicity of notation. Dropout value used in Equation
6 of the main paper is 0.1 and 0.5 is the dropout value used
in both FR and verb classifiers. We trained our FR models
to predict the most frequent 2000 nouns following [5] as it
covers more than 95% of samples. max role count = 6
is the number of maximum roles exist in a frame of imSitu
dataset. We train the model end-to-end including the CNN
where CNN is finetuned with initial learning rate 5× 10−5

and the rest of the model with learning rate of 1 × 10−3

using AdaMax [4] optimizer and Exponential scheduler. We
used mini-batch size of 64 and obtained the best model
by early stopping using development set performance. For
CAQ and CAI models, we use the pre-trained TDA model
to provide the hidden representations for context generation
in Equation 9-10 and the rest of the model is trained end to
end.

All our non-linear layers (fq, fa, fpq, fpi, fcq and frecon
from main paper and frole q and fverb q from this) are using
gated hyperbolic tangent activation [12] as follows:

ỹ = tanh(xWeightNorm(W)) (11)
g = σ(xWeightNorm(W′)) (12)
y = ỹ ◦ g (13)

Layer Name f input f output

fq d wemb× 2 d q
fa d img + d q d hidden
fpq d q d hidden
fpi d img d hidden
fcq d hidden+ d wemb× 2 d q
frecon d hidden×max role count d hidden
frole q d wemb d q
fverb q d wemb× 2 d q

Table 1: Dimensions of all used non-linear layers.

Both W and W′ have same dimensions
Rf input×f output. Sigmoid function works as a gate
to control each element of the input vector x ∈ Rf input



and output y ∈ Rf output. Table 1 includes exact
dimensions we used for each non-linear layer.
fclassifier and fv classifier use a Multilayer

Perceptron network shown in the box below. For
both fclassifier and fv classifier , Wcls in ∈
Rd hidden×(d hidden×2). For the last layer, the output
size differs for each of them as the number of classes
are N and V respectively. Therefore Wroles

cls out ∈
R(d hidden×2)×N and Wverb

cls out ∈ R(d hidden×2)×V .

WeightNorm(Wcls in)
ReLU

Dropout
WeightNorm(Wcls out)

fflatten img contains a linear layer W ∈
R(d img×Ne)×d hidden followed by a BatchNorm [3]
layer.

4. Ablation Studies
4.1. Impact of normalization layer

In our proposed models we use normalization indicated
in Equation 6 of the main paper. We use normalization
to reduce the magnitude of values output by element-wise
multiplication operation mentioned in Equation 5 of the
main paper. Element-wise multiplication can cause the
magnitude of outputs vary drastically and this might cause
the model to converge to local minimum [16]. Yu et al.
[16] have used normalization to address that and in this
section we empirically evaluate its impact on role and verb
predictions.

TDA role model
Feature Value Value-all

With normalization 72.96 37.60
Without normalization 72.47 36.85

CAQ role model
Feature Value Value-all

With normalization 73.62 38.71
Without normalization 73.19 37.93

TDA verb model
Feature Top 1 Verb Top 5 Verb

With normalization 34.29 61.92
Without normalization 34.83 61.87

Table 2: Impact of normalization on role and verb models.

From Table 2 we can observe that both TDA and
CAQ FR models have achieved a 1% improvement when
normalization layer is used. However for the verb model,
the performance have reduced slightly with normalization.

The reason for this could be, there are multiple queries
reasoned against a single image encoding (all roles of
the current frame) in the FR model. This can cause
the magnitude of each of the neurons of output vector
hu to vary quite a lot for queries of the same image.
Normalization has contributed to reduce this variation for
some extend. On the other hand, verb model only has
one query per image and our queries are very simple
compared to natural language sentences. Hence when the
normalization is added, it seems to have caused the verb
model to underfit a bit and lose its performance.

4.2. Impact of context information on TDA verb
model

Table 3 contains results on the improvement we obtained
by adding soft-query based context information to TDA
verb model. Model TDA verb with context is our final
verb model which we report results in our main paper
under Table 1 row 3. The difference it has with TDA verb
model is that in TDA verb, we do not incorporate soft query
based context for the reasoning process. We do not execute
Equation 4 - 7 in TDA verb model and directly send hu

(output from Equation 5 of the main paper) to Equation 8
for verb predictions.

Model Top 1 Verb Top 5 Verb
TDA verb 34.83 61.87

TDA verb with context 35.70 62.19

Table 3: Performance comparison of soft-query based
context incorporation to verb model.

The reason for this performance improvement is that
when hidden representations of Agent and Place are used,
it contains information about multiple potential role labels.
Therefore even the final role label prediction was wrong
causing our query q verb to be misleading, these hidden
representations can contribute to correct it by incorporating
secondary information which can provide clues on correct
labels.

4.3. Performance of CAQ without attention

Table 4 compares the impact of attention based context
generation on CAQ against TDA and CAQ which context
generated without using attention (we call it CAQ without
attention). CAQ without attention model does not execute
Equation 9-11 in the main paper. It just sums up hidden
representations of all neighbour roles together. CAQ
without attention can improve TDA, which does not use
any context adaptation. But it cannot surpass final CAQ
(which uses attention) as the impact from each neighbour
role to the current role differs from role to role. This can



be qualitatively observed in the role dependency matrices
in Figure 1.

Model Value Value-all
TDA 72.96 37.60
CAQ 73.62 38.71

CAQ without attention 73.54 38.32

Table 4: Performance comparison of CAQ for role
prediction with and without attention against TDA.

4.4. Computational Efficiency

We compared the computational efficiency (Table 5) of
proposed TDA and CAQ against Gated-GNN based SR
model (GGNN) [5]. GGNN has the highest parameter count
as it uses penultimate layer output from VGG-16 for image
encoding while we use grid region features after last max-
pooling layer. Although the non-CNN parameter count
of GGNN is low, since GGNN is an iterative method, its
computation time is high. TDA converged faster than role
inter-dependency modeling approaches (GGNN and CAQ).
However average running time of all models are of few
seconds difference in our cluster of 1 GeForce GTX TITAN
X and 1 GeForce GTX 1080 Ti.

Model
No of Total No of Avg Avg
Trainable non-CNN Training Evaluation
parameters parameters Time Time

GGNN 148574225 10109905 15.72h 114.71s
TDA 28660369 13937233 9.87h 116.98s
CAQ 34955921 20232785 15.46h 120.18s

Table 5: Model efficiency comparison. Total trainable
parameters include CNN and non-CNN parameters. CNN
is image encoder, trained end-to-end with the rest of the
models. “non-CNN” parameters : GNN - Parameters
required for Gated-GNN, TDA - parameters used in Eq.2-7
in paper, CAQ - parameters required for all components in
Section 4.1 in paper.

5. Qualitative Analysis

5.1. Comparison of CAQ to GNN with attention

Part of CAQ (Eq. 9-11 of main paper) has some
similarity with GNN with attention (GNN-A): both
techniques try to aggregate hidden representations of
neighbour nodes (indicated as context in the paper) to
be used for updating the current node representation.
However, the entire CAQ differs from GNN-A significantly;

in particular, the mechanism to update the current node
(current semantic role) is very different.

GNN heavily relies on inter-node agreement for final
node classification as it only uses the context for updating
nodes. If a node displays a deviation from the normal
pattern (Ex: for “Brushing”, in majority of samples where
a person with a toothbrush, target is “teeth”. But for a few,
the target is “finger nails”), GNN tends to suppress it by
updating the original deviated node representation using its
neighbourhood. The drawback of this updating mechanism
is that the model tends to get highly biased to training set
object co-occurrences. In contrast, CAQ uses the context
only to update the query in its query based reasoning
approach (Eq.12 in paper), avoiding directly updating node
representation (h from Eq.6 in paper). Since the updated
query has both the original question and context, we
implicitly enable the model to decide which part of the
query to focus when attending the image in Eq.3-4 in
paper. Therefore CAQ has the ability to decide between
independent query reasoning and inter-node agreement to
mitigate the drawback in GNN.

5.2. Contribution of proposed contextualization
module for improving inter-dependent query
handling in SR

We have included further qualitative results extending
from our main paper in this section. Page 6-8 contain
additional examples of sample predictions, attention maps
and role dependency matrices output from our TDA
and CAQ models to showcase how CAQ has been able
to improve its attention based reasoning and output
accurate predictions compared to TDA, using contextual
information. These samples are an extension to Figure 4
of the main paper. We discuss few examples in detail here
to show how context helped to improve the performance in
CAQ.

For verb “Weeding” (sample 1, Page 6), TDA has
predicted the label for role Tool wrong. We can observe
in the attention map, that TDA has highlighted the entire
area around the man including his hands when finding the
answer for role Tool, hence caused the prediction error.
However TDA has correctly attended the image for roles
Place and Agent and predicted them correctly. Next in
CAQ, when the context is generated for role Tool, we can
see from the role dependency matrix that Agent has the most
impact for Tool and Place has second most. Thanks to the
context provided by Agent and Place, we can observe that
CAQ has been able to provide more focused attention to the
“Hoe” and predict accurately.

Another example is verb “Nipping” in Page 7, sample 1.
TDA has not been able to correctly locate which object from



the image should be the answer for role Item. We can see
this error from its attention map. However it has been able
to correctly predict the Agent by locating the “Dog”. From
role dependency matrix we can see that, Agent provides the
most information when generating context for Item. Using
this context which provides the details that “Dog” is the
Agent, CAQ has been able to correctly adjust its attention
to clearly focus on the “Woman” and hence been able to
correct its final prediction.

Final example we are discussing is verb “Fixing” (Page
7, sample 4). TDA has incorrectly predicted the used Tool
as “Hand” due to the attention map which has highlighted
the entire area of hands and wrench. However CAQ as been
able to correct this error using the context generated from
neighbour roles’ information and focus directly to the Tool,
“Wrench”.

These samples emphasize how our proposed
contextualization module contributes to improve inter-
dependent query handing. The context generated using
neighbour roles has proven to be able to guide the attention
mechanism in CAQ to improve its answer localization
more accurately than TDA, which only uses the verb role
embedding as guidance to generate attention.

5.3. Role inter-dependency differences among verbs

Next in Figure 1, we have role dependency matrices
for several more verbs along with their sample images.
These role dependency matrices are generated combining
the unnormalized neighbour role weights generated for all
roles in a single frame from Equation 9 of the main paper.
Each row of our dependency matrix shows the current role,
to which we generate the context using neighbour roles.
Each column is for each neighbour role in the current frame.
Each cell indicates the value which represents the impact
a given neighbour role has on the current role. Diagonal
elements have assigned the lowest value to indicate that
current role does not consider itself when generating the
context.

There are multiple subsets of roles that appear in many
verbs. For an example the subset of roles {Agent, Place,
Item} occur in “Opening”, “Tugging” and “Carrying”,
while “Opening”, “Applying”, “Tuning” and “Spreading”
share another subset of roles together which consists of
{Agent, Place, Tool}. But do these roles get the same level
of importance in every verb they appear? Do they even
maintain the same correlation with their neighbour roles
across the verbs they appear? This section is to highlight
our observations on these matters according to the generated
role dependency matrices by our proposed approach.

We observe based on our learnt role dependency
matrices that, eventhough multiple verbs can have same
subset of roles, the importance each role gets among its
neighbours can vary based on each verb. For an example,
eventhough Item being the role with the most impact
for “Opening” and “Carrying”, and Agent has the least
impact for these verbs, Agent has the most impact for
verb “Tugging” and Item’s impact is lesser. Role inter-
dependency also shows a similar characteristic. For an
example, Place is highly dependent on Item for “Opening”.
But when it comes to “Tugging” and “Carrying”, Place has
a relatively lesser dependency on Item.









Figure 1: Role Dependency Matrices of more verbs with sample images which show different senses of verbs. Role list
shows the order of roles occur in the matrix whose rows indicate the Current Role and each column shows the Neighbour
Roles. These samples depict how the role with the most impact and role inter-dependencies vary from verb to verb.



6. Error Analysis
We discuss about the main reasons which caused our FR models to make wrong predictions in this section. We consider

errors made by CAQ while TDA has the correct prediction, as well as errors that both TDA and CAQ have made which
caused both of them to fail in particular samples. When we call a model has failed in a sample, we mean it has been unable
to predict the entire frame (measured by Value-all criterion) correctly.

Figure 2: Samples where our models made wrong predictions. Top Row : CAQ has made errors for samples TDA has correct
predictions. Bottom Row : Both models have made wrong predictions according to ground truth annotations. Green is used
to indicate correct predictions, red otherwise.

We observed that most errors have happened because of the variety of labels imSitu dataset has for visually similar objects.
Wrong predictions caused by object classification errors are comparatively lesser. Figure 2 shows examples on this. Top row
consists of examples where TDA has predicted correctly, but CAQ has made some errors. We can see other than the Agent
prediction error of verb “Arranging”, all others have very similar predictions to the correct labels. However since the ground
truth annotations do not have these labels included, they have marked as wrong. Same reason have caused in the bottom
row also where both TDA and CAQ have failed to predict correctly. For verb “Pulling”, although models have misclassified
“carriage” for a “bicycle” as the pulled Item, the Agent label predictions are very reasonable. But the ground truth only
contains “cyclist” and “woman”, hence our predictions are marked wrong. However for the verb “Rocking”, both models
have not been able to clearly identify the doll in the crib. When it comes to verb “Selling”, both models have not been able
to deduce the Item should be “Milk” based on the look of the container. This is because the dataset does not have enough
samples to support this information. For the verb “Pedaling”, both our predictions are very relevant. But as they differ from
the ground truth, again the predictions are indicated as wrong. Even though imSitu has three annotations per image, it has not
been able to cover all possible correct answers in some cases.

We believe grouping these vast variety of visually similar objects and narrowing down the possible answer space will be
helpful in the future. Because it will allow future work to clearly separate out errors caused by models and address them.
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