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1. A closer look to our inversion method
In the paper, we presented a novel inversion technique

that uses the attention layer of the Discriminator to extract
weights for our loss function. This section aims to explain
technical details of our implementation and clarify the de-
tails of our approach.

We begin with a recap of our method as presented in the
paper. Given a real image we pass it to the discriminator and
we extract the attention map from the attention layer. This
attention map contains for every point of the query image,
a probability distribution over the pixels of the key image.
We can then convert this attention map to a saliency map:
by averaging the attention each key point gets from all the
query points, we can get a probability distribution over the
“importance” of the pixels of the key image. We denote this
saliency map with S. Our proposed inversion algorithm is
to perform gradient descent to minimize the discriminator
embedding distance, weighted by this salience map:

‖
(
D0(G(z))−D0(x)

)
· S′‖2, (1)

where S′ is a projected version of saliency map S, x is the
image, and D0 is the Discriminator network up to, but not
including, the attention layer.

1.1. Multiple heads and saliency map

There are some practical considerations that we need to
address before illustrating that our inversion method indeed
works: the most important of which is how the saliency map
S looks like.

In our analysis of the YLG attention layers, we explain
that because of the Full Information property, our patterns
are able, potentially, to discover a dependency between any
two pixels of an image. If that is true, we should expect that

in the general case our saliency map, generated by the av-
erage of all heads, allocates non-zero weights to all image
pixels. The important question becomes whether this joint
saliency map weights more the pixels that are important for
a visually convincing inversion. For example, in case of a
bird flying with a blue-sky in the background, we should
be ready to accept a small error in some point in the clouds
of the sky but not a bird deformation that will make the in-
verted image look unrealistic. Therefore, our saliency map
should allocate more weight in the bird than in it allocates
in the background sky.

In the paper, we show that different heads specialize
in discovering important image parts (for example, some
heads learn to focus on local neighbhoords, important shape
edges, background, etc.) so extracting a saliency map S
by averaging all heads usually leads in a uniform distri-
bution over pixels, which is not helping inversion. Figure
1b shows the saliency map jointly all heads of the atten-
tion layer of the discriminator produce. Although the bird
receives a bit more attention than the background, it is not
clear how this map would help weight our loss for inversion.
However, as illustrated in 1c, there are heads that produce
far more meaningful saliency maps for a good-looking in-
version. There is a drawback here as well though; if we use
that head only, we completely miss the background.

To address this problem, we find two solutions that work
quite well.

• Solution 1: calculate Equation 1 separately for each
head and then add the losses. In that case, the new loss
function is given by the following equation:∑

i

‖
(
D0(G(z))−D0(x)

)
· S′

i‖2, (2)

where S′
i is the saliency map extracted from head i.
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(a) (b) (c)

Figure 1: (a) Real image of a redshank. (b) Saliency map extracted from all heads of the Discriminator. (c) Saliency map
extracted from a single head of the Discriminator. Weighting our loss function with (b) does not have a huge impact, as the
attention weights are almost uniform. Saliency map from (c) is more likely to help correct inversion of the bird. We can use
saliency maps from other heads to invert the background as well.

• Solution 2: Examine manually the saliency maps for
each head and remove the heads that are attending
mainly to non-crucial for the inversion areas, such as
homogeneous backgrounds.

1.2. More inversion visualizations

We present several inversions for different categories of
real images at Figure 2. In all our Figures, we use Solu-
tion 1 as it has the advantage that it does not require human
supervision.

With our method, we can effectively invert real world
scenes. We tested the standard inversion method [2] for
these images as well and the results were far less impres-
sive for all images. Especially for the dogs, we noted com-
plete failure of the previous approach, similar to what we
illustrate in Figure 5.

1.3. Experiments setup

In this subsection, we will briefly describe the experi-
mental setup for our inversion technique. We choose to use
the recently introduced Lookahead [9] optimizer as we find
that it reduces the number of different seeds we have to try
for a successful inversion. For the vast majority of the ex-
amined real images, we are able to get a satisfying inversion
by trying at most 4 different seeds. We set the learning rate
to 0.05 and we update for maximum 1500 steps. On a sin-
gle V100 GPU, a single image inversion takes less than a
minute to complete. We choose to invert real-world images
that were not present in the training set. We initialize our
latent variables from a truncated normal distribution, as ex-
plained in 2.

2. Truncation and how it helps inversion
In the BigGAN [3] paper, the authors observed that la-

tent variables sampled from a truncated normal distribution

generated generally more photo-realistic images compared
to ones generated from the normal distribution which was
used during the training. This so-called truncation trick (re-
sampling the values with magnitude above a chosen thresh-
old) leads to improvement in sample quality at the cost of
reduction in sample variety. For the generated images of
YLG presented in both the original paper and this supple-
mentary material, we also utilized this trick.

Interestingly, the truncation trick can help inversion as
well under some conditions. If the original image has good
quality, then according to the truncation trick, it is more
probable to be generated by a latent variable sampled from
a truncated normal (where values which fall outside a range
are resampled to fall inside that range) than the standard
normal distribution N(0, I). For that reason, in our inver-
sions we start our trainable latent variable from a sample of
the truncated normal distribution. We found experimentally
that setting the truncation threshold to two standard devia-
tions from the median (in our case 0), is a good trade-off be-
tween producing photo-realistic images and having enough
diversity to invert an arbitrary real world image.

3. Strided Pattern

In the ablation studies of our paper, we train a model
we name YLG - Strided. For this model, we report bet-
ter results than the baseline SAGAN [8] model and slightly
worse results than the proposed YLG model. The purpose
of this section is to give more information on how YLG and
YLG - Strided differ.

First of all, the only difference between YLG and YLG
Strided is the choosing of attention masks for the atten-
tion heads: both models implement 2-step attention patterns
with Full Information and two-dimensional locality using
the ESA framework.

YLG model uses the RTL and LTR patterns introduced



Figure 2: More inversions using our technique. To the left we present real images and to the right our inversions using YLG
SAGAN.

in the paper (see Figure 2b, 2c of the paper). Each pat-
tern corresponds to a two-step attention: in our implemen-
tation of multi-step attention we compute steps in parallel
using multiple heads, so in total we need 8 attention heads
for YLG. In YLG - Strided instead of using different pat-
terns (RTL and LTR), we stick with using a single atten-
tion pattern. Our motivation is to: (i) investigate whether
using multiple attention patterns simultaneously affects per-
formance, (ii) discover whether the performance differences
between one-dimensional sparse patterns reported in the lit-
erature remain when the patterns are rendered to be aware

of two-dimensional geometry. To explore (i), (ii) a natu-
ral choice was to work with the Strided pattern proposed in
Sparse Transformers [4] as it was found to be (i) effective
for modeling images and (ii) more suitable than the Fixed
pattern (see Figure 2a), on which we built to invent LTR,
RTL.

We illustrate the Strided pattern, as proposed in Sparse
Transformers [4], in Figures 3a, 3c. For a fair comparison
with LTR, RTL we need to expand Strided pattern in or-
der for it to have Full Information. Figures 3b, 3d illustrate
this expansion. The pattern illustrated in this Figure is ex-



actly the pattern that YLG - Strided uses. Note that this
pattern attends to the same order of positions, O(n

√
n), as

LTR and RTL. For one to one comparison with YLG, YLG
- Strided has also 8 heads: the Full Information pattern is
implemented 4 times, as we need 2 heads for a 2-step pat-
tern. As already mentioned, we also use ESA framework
for YLG - Strided.

4. Multiple steps and multiple heads
In the paper, we use different attention heads to imple-

ment the different steps of 2−step attention sparsifications.
However, it might still be unclear why and how attention
heads are related to different attention steps, in the sense
that each node in the Information Flow Graph attends to
any other node in the graph. In this section, we will clarify
any vague points around this matter.

The relation between multiple heads and multiple steps
is indeed a confusing issue in the literature. We follow
multi-stage attention exactly as implemented in [4] sec. 4.2
and in their source code. There are three ways that one
could implement 2-step attention: (i) stacking two attention
layers, each one implementing a stage, (ii) using a single
attention layer to implement both stages or (iii) using mul-
tiple heads and combining their outputs at the end. Method
(i) doubles the attention parameters and did not work as
well empirically. Method (ii) introduces undesirable weight
sharing: we have to multiply the first stage output again
with the same matrices WQ,WK ,WV for the second stage,
this gave poor experimental performance. Method (iii)
splits stages into different heads. In this case, the stages
are computed in parallel and independently. We emphasize
that each head independently assigns attention weights to
the allowed positions. In the language of Information Flow
Graphs, for our 2−step patterns this means that the atten-
tion scores between the last two vertex sets are independent
with attention scores between the first two vertex sets. How-
ever, the values of different stages are combined at the end
by merging the head dimension of the value tensor. This
is how Full Information is maintained in the implementa-
tion: when we multiply with the values matrix, our product
involves the information obtained by all heads.

The procedure described above is better illustrated in
Figure 4. Sub-figure 4a shows the Information Flow Graph
for the RTL pattern for a sequence of length 4. Sub-figure
4b shows how this 2−step attention patter is implemented
in practice. Separate heads implement the attention between
subsequent vertex sets of the original Information Flow
Graph independently. Then, the partial outputs of the heads
are concatenated along the feature dimension. Each node in
this scheme captures Full Information since its’ final vector
representation contains information from all other nodes in
the graph.

One drawback of using multiple heads to implement

multiple steps is the independence between the scores of
each head in a single pass. However, we notice that as the
training proceeds heads learn to co-operate (through back-
propagation). Additionally, this method has the advantage
that steps are computed in parallel and thus there are no per-
formance bottlenecks.

As we noted in the paper, we also get better results us-
ing multiple attention patterns (LTR, RTL) simultaneously.
We need two heads (one for each step) for each pattern and
use each pattern twice. Thus, for YLG we use 8 heads to-
tal. In summary, different heads implement different stages.
Masks constrain the positions that each head can attend.
Multiple patterns encourage diversity and improve perfor-
mance.

5. Things that did not work
In this section, we present several ideas, relevant to the

paper, that we experimented on and found that their re-
sults were not satisfying. Our motivation is to inform the
research community about the observed shortcomings of
these approaches so that other researchers can re-formulate
them, reject them or compare their findings with ours.

5.1. Weighted inversion at the generator space

We already discussed that our key idea for the inversion:
we pass a real image to the discriminator, extract the atten-
tion map, convert the attention map to a saliency distribu-
tion S and we perform gradient descent to minimize the dis-
criminator embedding distance, weighted by this saliency
map:

‖
(
D0(G(z))−D0(x)

)
· S′‖2,

where S′ is a projected version of saliency map S, x is the
image, and D0 is the Discriminator network up to, but not
including, the attention layer. In practice, we use Equation 2
for the reasons we explained in Section 1 but for the rest of
this Section we will overlook this detail as it is not important
for our point.

Equation 1 implies that the inversion takes place in the
embedding space of the Discriminator. However, naturally
one might wonder if we could use the saliency map S to
weight the inversion of the Generator, in other words, if we
could perform gradient descent on:

‖(G(z)− x) · S′′‖2, (3)

where S′′ is a projected version of S to match the dimen-
sions of the Generator network.

In our experiments, we find that this approach gener-
ally leads to inversions of poor quality. To illustrate this,
we present inversions of an image of a real husky from the
the weighted generator inversion, the weighted discrimina-
tor inversion and standard inversion method [2] at Figure
5.



(a) Attention masks for Strided Pattern [4]. (b) Attention masks for YLG - Strided (Extended Strided with Full
Information property)

(c) Information Flow Graph associated with Strided Pattern. This pat-
tern does not have Full Information, i.e. there are dependencies be-
tween nodes that the attention layer cannot model. For example, there
is no path from node 2 of V 0 to node 1 of V 2.

(d) Information Flow Graph associated with YLG - Strided pattern.
This pattern has Full Information, i.e. there is a path between any
node of V 0 and any node of V 2. Note that the number of edges is only
increased by a constant compared to the Strided Attention Pattern [4],
illustrated in 3a.

Figure 3: This Figure illustrates the original Strided Pattern [4] and the YLG - Strided pattern which has Full Information. First row
demonstrates the different boolean masks that we apply to each of the two steps. Color of cell [i. j] indicates whether node i can attend
to node j. With dark blue we indicate the attended positions in both steps. With light blue the positions of the first mask and with green
the positions of the second mask. The yellow cells correspond to positions that we do not attend to any step (sparsity). The second
row illustrates Information Flow Graph associated with the aforementioned attention masks. An Information Flow Graph visualizes how
information “flows” in the attention layer. Intuitively, it visualizes how our model can use the 2-step factorization to find dependencies
between image pixels. At each multipartite graph, the nodes of the first vertex set correspond to the image pixels, just before the attention.
An edge from a node of the first vertex set, V 0, to a node of the second vertex set, V 1, means that the node of V 0 can attend to node of V 1

at the first attention step. Edges between V 1, V 2 illustrate the second attention step.

There are several reasons that could explain the quality
gap when we change from inversion to the space of the Dis-
criminator to that of the Generator. First of all, the saliency
map we use to weight our loss is extracted from the Dis-
criminator, which means that the weights reflect what the
Discriminator network considers important at that stage.
Therefore, it is reasonable to expect that this saliency map

would be more accurate to describe what is important for
the input of the attention of the discriminator than to the
output of the Generator. Also note that due to the layers
of the Discriminator before the attention, the images of the
output of the generator and the input of the attention of the
Discriminator can be quite different. Finally, the Discrim-
inator may provide an ”easier” embedding space for inver-



(a) RTL Information Flow Graph for N = 4.

(b) Implementation of RTL attention pattern (N = 4) in practice using separate heads for separate steps. Full Information is maintained
since the final representation of each node contains information from all other nodes in the graph.

Figure 4: Implementation of multiple steps attention with multiple heads

(a) Real image. (b) Inversion with our method.
(c) Weighted inversion at Gener-
ator.

(d) Inversion using the standard
method [2].

Figure 5: Inversion with different methods of the real image of 5a. Our method, 5b, is the only successful inversion. The
inversion using the weights from the saliency map to the output of the Generator, 5c, fails badly. The same holds for inversion
using the standard method in the literature [2], as shown in 5d.



sion. The idea of using a different embedding space than
the output of the Generator it is not new; activations from
VGG16 [7] have also been used for inversion [1]. Our nov-
elty is that we use the Discriminator instead of another pre-
trained model to work on a new embedding space.

5.2. Inversion at the Discriminator space without
weights

Our experimental evidence showed that weighted inver-
sion in the Discriminator space was particularly effective.
Thus, it is natural to wonder whether this inversion was
successful because of the weights or just because inver-
sion itself is easier in the Discriminator space. Although,
for some images inversion on the Discriminator space gave
more encouraging results comparing to the standard inver-
sion method, it often got trapped on local minima of the
loss function. Weighting the loss function in the Discrimi-
nator space consistently gave qualitatively better inversions
and thus we did not expand our experiments on the idea of
unweighted inversion.

5.3. Combination of dense and sparse heads

In our paper, we provide strong experimental evidence
that multi-step two-dimensional sparse local heads can be
more efficient than the conventional dense attention layer.
We justify this evidence theoretically by modelling the
multi-step attention with Information Flow Graphs and indi-
cating the implications of Full Information. Naturally, one
might wonder what would happen if we combine YLG at-
tention with dense attention. To answer this question, we
split heads into two groups, the local - sparse heads and the
dense ones. Specifically, we use 4 heads that implement the
RTL, LTR patterns (see paper for more details) and 4 dense
heads and we train this variation of SAGAN. We use the
same setup as with our other experiments. We report FID
19.21 and Inception: 51.23. These scores are far behind
than the scores of YLG and thus we did not see any benefit
continuing the research in this direction.

5.4. Different resolution heads

One idea we believed it would be interesting was to train
SAGAN with a multi-headed dense attention layer of dif-
ferent resolution heads. In simple words, that means that in
this attention layer some heads have a wider vector repre-
sentation than others. Our motivation was that the different
resolutions could have helped enforcing locality in a dif-
ferent way; we expected the heads with the narrow hidden
representations to learn to attend only locally and the wider
heads to be able to recover long-range dependencies.

In SAGAN, the number of channels in the query vector
is 32, so for an 8-head attention layer normally each head
would get 4 positions. We split the 8 heads into two equal
groups: the narrow and the wide heads. In our experiment,

narrow heads get only 2 positions for their vector represen-
tation while wide heads get 6. After training on the same
setup with our other experiments, we obtain FID 19.57 and
Inception score: 50.93. These scores are slightly worse than
the original SAGAN, but are far better than SAGAN with
dense 8-head attention which achieved FID 20.09 and In-
ception 46.01, as mentioned in the ablation study.

At least in our preliminary experiments, different resolu-
tion heads were not found to help very much. Perhaps they
can be combined with YLG attention but we more research
would be needed in this direction.

6. Information Flow Graphs
We found that thinking about sparse attention as a net-

work with multiple stages is helpful in visualizing how in-
formation of different tokens is attended and combined. We
use Information Flow Graphs (IFGs) that were introduced
in [5] for modeling how distributed storage codes preserve
data. In full generality, IFGs are directed acyclic graphs
with capacitated directed edges. Each storage node is rep-
resented with two copies of a vertex (xin and xout) connected
by a directed edge with capacity equal to the amount of in-
formation that can be stored into that node. The key insight
is that a multi-stage attention network can be considered a
storage network since intermediate tokens are representing
combinations of tokens at the previous stage. The IFGs we
use in this paper are a special case: every token of every
stage of an attention layer is represented by a storage node.
Since all the tokens have the same size, we can eliminate
vertex splitting and compactly represent each storage node
by a single vertex, as shown in Figure 3d.

Full information is a design requirement that we found to
be helpful in designing attention networks. It simply means
that any single input token is connected with a directed path
to any output token and hence information (of entropy equal
to one token representation) can flow from any one input
into any one output. As we discussed in the paper, we found
that previously used sparse attention patterns did not have
this property and we augmented them to obtain the patterns
we use. A stronger requirement would be that any pair of
input nodes is connected to any pair of output nodes with
two edge-disjoint paths. This would mean that flow of two
tokens can be supported from any input to any output. Note
that a fully connected network can support this for any pair
or even for any set of k input-output pairs for ∀k ≤ n.

An interesting example is the star transformer [6] where
all n input tokens are connected to a single intermediate
node which is then connected to all output tokens. This
information flow graph has 2n directed edges and can in-
deed support full information. However, it cannot support
a flow of 2 tokens for any pair, since there is a bottleneck
at the intermediate node. We believe that enforcing good
information flow for pairs or higher size sets improves the



design of attention networks and we plan to investigate this
further in the future.

7. Generated images
We end our Supplementary material with some more

generated images from our YLG SAGAN. The images are
divided per category and are presented in Figures 6, 7, 8.



Figure 6: Generated images from YLG SAGAN divided by ImageNet category.



Figure 7: Generated images from YLG SAGAN divided by ImageNet category.



Figure 8: Generated images from YLG SAGAN divided by ImageNet category.
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