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1. Visualisation Results
We show some challenging results predicted by

RetinaFace-ResNet50 on 300VW [4], AFW [7], Pascal [3]
and WIDER FACE [6]. The threshold of face score is set as
0.5. We employ the single-scale test with the original res-
olution. All 3D meshes are rendered by the Vulkan toolkit.
RetinaFace shows impressive robustness in the wild.

1.1. 300VW

300VW [4] aims at the evaluation of 2D facial landmark
localisation and tracking under variations of pose, expres-
sion, illumination, background, occlusion, and image qual-
ity. The test set of 300VW includes three scenarios (Sce-
nario 1: 31 videos, Scenario 2: 19 videos, and Scenario 3:
14 videos) with incremental difficulty. In Fig. 2, we show
one frame of the whole 300VW dataset. The proposed Reti-
naFace can not only predict accurate 3D vertices but also
estimate precise pose.

1.2. AFW

The AFW dataset [7] contains 205 high-resolution im-
ages with 473 faces [3] collected from Flickr. Images in
this dataset contain cluttered backgrounds with large varia-
tions in viewpoint. In Fig. 3, we show two mesh regression
results predicted by the proposed RetinaFace.

1.3. Pascal

The PASCAL face dataset [3] is collected from the PAS-
CAL 2012 person layout subset, includes 1, 335 labelled
faces in 851 images with large facial appearance and pose
variations (e.g. large in-plane rotation). In Fig. 4, we show
two mesh regression results predicted by the proposed Reti-
naFace.

* Equal contributions.
InsightFace is a nonprofit Github project for 2D and 3D face analysis.

1.4. WIDER FACE

The WIDER FACE dataset [6] consists of 32, 203 im-
ages and 393, 703 face bounding boxes with a high degree
of variability in scale, pose, expression, occlusion and illu-
mination. The WIDER FACE dataset is split into training
(40%), validation (10%) and testing (50%) subsets by ran-
domly sampling from 61 scene categories. For validation
and testing, three levels of difficulty (i.e. Easy, Medium and
Hard) are defined by incrementally incorporating hard sam-
ples. In Fig. 5, we show two mesh regression results pre-
dicted by the proposed RetinaFace.

2. Limitations of RetinaFace

As we can see from the above visual results, RetinaFace
can not predict facial details (e.g. dimple and wrinkle) as
our 3D mesh regression branch is designed within the face
detector and only predicts 1k vertices considering the effi-
ciency.

In Fig. 6, we show some bad cases from WIDER FACE.
Since we set a high threshold (0.5) to avoid false positives,
some hard faces (e.g. Fig. 6(a)) can be missed by our detec-
tor. On WIDER FACE, there are plenty of faces under low-
resolution and occlusion, RetinaFace sometimes also makes
wrong predictions (e.g. Fig. 6(b), 6(c), 6(d)). Nevertheless,
the projected face regions in the 3D mesh regression branch
still have the effect of attention [5] which can help to im-
prove face detection as confirmed in the section of ablation
study.

RetinaFace is robust to exaggerated expression but it has
some minimum fitting error around the mouth area (first
line, fifth column sample in Fig. 7) as we have not used any
specific training data with expression variations. By con-
trast, MFN [2] employs FacewareHouse [1] as the training
data to improve the 3D fitting under exaggerated expres-
sions.
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(a) Val: Easy
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(b) Val: Medium
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(c) Val: Hard
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(d) Test: Easy
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(e) Test: Medium
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(f) Test: Hard

Figure 1. Precision-recall curves of RetinaFace-ResNet152 on the WIDER FACE validation and test subsets. RetinaFace-ResNet152
achieves state-of-the-art AP on all validation and test subsets.

3. Precision-recall Curves on WIDER FACE

As shown in Fig. 1, RetinaFace-ResNet152 achieves
state-of-the-art AP on all validation and test subsets, i.e.,
96.9% (Easy), 96.3% (Medium) and 92.2% (Hard) for val-
idation set, and 96.3% (Easy), 95.5% (Medium) and 91.7%
(Hard) for test set.
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(a) 3D Vertices on Face

(b) Mesh and Pose on Face

Figure 2. Exemplar 3D mesh regression results on 300VW.



(a) 3D Vertices on Face (b) Mesh and Pose on Face

(c) 3D Vertices on Face

(d) Mesh and Pose on Face

Figure 3. Exemplar 3D mesh regression results on AFW.



(a) 3D Vertices on Face (b) Mesh and Pose on Face

(c) 3D Vertices on Face

(d) Mesh and Pose on Face

Figure 4. Exemplar 3D mesh regression results on PASCAL FACE.



(a) 3D Vertices on Face (b) Mesh and Pose on Face

(c) 3D Vertices on Face

(d) Mesh and Pose on Face

Figure 5. Exemplar 3D mesh regression results on WIDER FACE.



(a) Missed Face (b) Wrong Shape

(c) Wrong Pose (d) Crashed Shape

Figure 6. Bad cases on WIDER FACE. (a) the missed face is annotated by the blue box. (b) (c) and (d) wrong mesh regression results are
annotated by the red boxes.

Figure 7. Testing results of RetinaFace (ResNet-50) compared to MFN [2] (First row). We show both the predicted 1k 3D vertices (Second
row) and the 3D meshes rendered by the Vulkan toolkit (Third row).


