
Appendix - Semantic Image Manipulation Using Scene Graphs

In the following, we provide additional results, as well
as full details about the implementation and training of our
method. Code and data splits for future benchmarks will be
released in the project web-page1.

1. More Qualitative Results
Relationship changes Figure 1 illustrates in more detail
our method’s behavior during relationship changes. We
investigate how the bounding box placement and the image
generation of an object changes when one of its relationships
is altered. We compare results between auto-encoding mode
and modification mode. The bounding box coordinates are
masked in both cases so that the model can decide where
to position the target object depending on the relationships.
In auto-encoding mode, the predicted boxes (red) end up
in a valid location for the original relationship, while in
the altered setup, the predicted boxes respect the changed
relationship, e.g. in auto mode, the person remains on the
horse, while in modification mode the box moves beside the
horse.

Spatial distribution of predicates Figure 2 visualizes the
heatmaps of the ground truth and predicted bounding box
distributions per predicate. For every triplet (i.e. subject -
predicate - object) in the test set we predict the subject and
object bounding box coordinates x̂i. From there, for each
triplet we extract the relative distance between the object
and subject centers, which are then grouped by predicate
category. The plot shows the spatial distribution of each
predicate. We observe similar distributions, in particular for
the spatially well-constrained relationships, such as wears,
above, riding, etc. This indicates that our model has
learned to accurately localize new (predicted) objects in
relation to objects already existing in the scene.

User interface video This supplement also contains a
video, demonstrating a user interface for interactive image
manipulation. In the video one can see that our method
allows multiple changes in a given image. https://
he-dhamo.github.io/SIMSG/

Comparison Figure 3 presents qualitative samples of our
method and a comparison to [1] for the auto-encoding (a)
and object removal task (b). We adapt [1] for object removal

1https://he-dhamo.github.io/SIMSG/

by removing a node and its connecting edges from the input
graph (same as in ours), while the visual features of the
remaining nodes (coming from our source image) are used
to reconstruct the rest of the image. We achieve similar
results for the auto-encoding, even though our method is
not specifically trained for the fully-generative task. As
for object removal, our method performs generally better,
since it is intended for direct manipulation on an image.
For a fair comparison, in our experiments, we train [1] on
Visual Genome. Since Visual Genome lacks segmentation
masks, we disable the mask discriminator. For this reason,
we expect lower quality results than presented in the original
paper (trained on MS-COCO with mask supervision and
simpler scene graphs).

2. Ablation study on CLEVR
Tables 1 and 2 provide additional results on CLEVR,

namely for the image reconstruction and manipulation tasks.
We observe that the version of our method with a SPADE
decoder outperforms the other models in the reconstruction
setting. As for the manipulation modes, our method clearly
dominates for relationship changes, while the performance
for other changes is similar with the baseline.

3. Datasets
CLEVR [5]. We generate 21,310 pairs of images which
we split into 80% for training, 10% for validation and 10%
for testing. Each data pair illustrates the same scene under
a specific change, such as position swapping, addition, re-
moval or changing the attributes of the objects. The images
are of size 128 × 128 × 3 and contain n random objects
(3 ≤ n ≤ 7) with random shapes and colors. Since there
are no graph annotations, we define predicates as the relative
positions {in front of, behind, left of, right
of} of different pairs of objects in the scene. The gener-
ated dataset includes annotated information of scene graphs,
bounding boxes, object classes and object attributes.

Visual Genome (VG) [7]. We use the VG v1.4 dataset
with the splits as proposed in [4]. The training, validation
and test set contain namely 80%, 10% and 10% of the dataset.
After applying the pre-processing of [4] the dataset contains
178 object categories and 45 relationship types. The final
dataset after processing comprises 62,565 train, 5,506 val,
and 5,088 test images with graphs annotations. We evaluate

https://he-dhamo.github.io/SIMSG/
https://he-dhamo.github.io/SIMSG/
https://he-dhamo.github.io/SIMSG/
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Figure 1. Re-positioning tested in more detail. We mask the bounding box xi of an object and generate a target image in two modes. We
choose a relationship that involves this object. In auto-mode (left) the relationship is kept unchanged. In modification mode, we change the
relationship. Red: Predicted box for the auto-encoded or altered setting. Green: ground truth bounding box for the original relationship.
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Figure 2. Heatmaps generated from object and subject relative positions for selected predicate categories. The object in each image
is centered at point (0, 0) and the relative position of the subject is calculated. The heatmaps are generated from the relative distances of
centers of object and subject. Top: Ground truth boxes. Bottom: our predicted boxes (after masking the location information from the graph
representation and letting it be synthesized.

our models on the images of the test set. We observed rela-
tionship duplicates in the dataset and we empirically found
that it does not affect the image generation task. However, it
leads to ambiguity on modification time (when tested with
GT graphs) once we change only one of the duplicate edges.
Therefore, we remove such duplicates once one of them is
edited.

4. Implementation details

4.1. Image→ scene graph

A state-of-the-art scene graph prediction network [8] is
used to acquire scene graphs for the experiments on VG.
We use their publicly available implementation2 to train the
model. The data used to train the network is pre-processed
following [2], resulting in a typically used subset of Visual

2https://github.com/yikang-li/FactorizableNet

https://github.com/yikang-li/FactorizableNet


Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ FID ↓ MAE ↓ SSIM ↑

Image Resolution 64× 64

Fully-supervised CRN 6.74 97.07 0.035 5.34 9.34 93.49

Ours (GT) w/o φi CRN 7.96 97.92 0.016 4.52 14.36 81.75

Ours (GT) w/ φi CRN 6.15 98.50 0.008 3.73 10.47 88.53

Ours (GT) w/o φi SPADE 4.25 98.79 0.009 3.75 9.67 87.13

Ours (GT) w/ φi SPADE 2.73 99.35 0.002 3.42 5.42 94.16

Image Resolution 128× 128

Fully-supervised CRN 9.83 97.36 0.061 4.42 12.38 91.94

Ours (GT) w/o φi CRN 14.82 96.85 0.041 8.09 20.59 74.71

Ours (GT) w/ φi CRN 14.47 96.93 0.038 8.36 19.56 75.25

Ours (GT) w/o φi SPADE 9.26 98.27 0.029 3.21 15.74 79.81

Ours (GT) w/ φi SPADE 5.39 99.18 0.007 1.17 8.32 89.84

Table 1. Image reconstruction on CLEVR. We report the results using ground truth scene graphs (GT).
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Figure 3. Qualitative results comparing ours CRN and [1] a) Fully-generative setting b) Object removal

Genome (sVG) that includes 399 object and 24 predicate
categories. We then split the data as in [4] to avoid overlap
in the training data for the image manipulation model. We

train the model for 30 epochs with a batch size of 8 images
using the default settings from [8].



Method Decoder
All pixels RoI only

MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑

Image Resolution 64× 64

Change Mode Addition

Fully-supervised CRN 6.57 98.60 0.013 7.68 97.72

Ours (GT) w/ φi CRN 7.88 96.93 0.027 9.79 95.10

Ours (GT) w/ φi SPADE 4.96 97.45 0.026 6.13 96.86

Change Mode Removal

Fully-supervised CRN 4.52 98.60 0.006 5.53 97.17

Ours (GT) w/ φi CRN 5.67 97.13 0.026 7.02 96.41

Ours (GT) w/ φi SPADE 3.45 97.32 0.022 3.88 98.09

Change Mode Replacement

Fully-supervised CRN 6.64 97.76 0.015 7.33 97.11

Ours (GT) w/ φi CRN 8.24 96.96 0.025 9.29 96.02

Ours (GT) w/ φi SPADE 5.88 97.43 0.023 6.56 97.48

Change Mode Relationship changing

Fully-supervised CRN 9.76 93.91 0.111 17.51 83.24

Ours (GT) w/ φi CRN 10.09 93.50 0.0678 14.91 86.17

Ours (GT) w/ φi SPADE 8.11 93.75 0.069 13.01 86.99

Image Resolution 128× 128

Change Mode Addition

Fully-supervised CRN 9.72 97.57 0.031 10.61 94.09

Ours (GT) w/ φi CRN 13.77 96.44 0.048 13.21 91.05

Ours (GT) w/ φi SPADE 7.79 97.89 0.040 7.57 96.18

Change Mode Removal

Fully-supervised CRN 6.15 98.72 0.014 7.27 95.58

Ours (GT) w/ φi CRN 11.75 97.21 0.052 11.55 92.34

Ours (GT) w/ φi SPADE 4.48 98.54 0.042 4.60 97.68

Change Mode Replacement

Fully-supervised CRN 10.49 97.57 0.035 11.23 95.09

Ours (GT) w/ φi CRN 16.38 96.14 0.052 14.74 91.98

Ours (GT) w/ φi SPADE 10.25 97.51 0.041 9.98 96.14

Change Mode Relationship changing

Fully-supervised CRN 13.91 95.26 0.169 21.49 82.46

Ours (GT) w/ φi CRN 16.61 94.60 0.128 19.21 85.24

Ours (GT) w/ φi SPADE 11.62 95.76 0.125 14.01 89.15

Table 2. Image manipulation on CLEVR. We report the results for different categories of modifications.

4.2. Scene graph→ image

SGN architecture details. The learned embeddings of the
object ci and predicate ri both have 128 dimensions. We cre-
ate the full representation of each object oi by concatenating
ci together with the bounding box coordinates xi (top, left,
bottom, right) and the visual features corresponding to the
cropped image region defined by the bounding box. The fea-
tures are extracted by a VGG-16 architecture [9] followed by
a 128-dimensional fully connected layer. A linear projection

layer then projects the total object representation down to
128-d.

During training, to hide information from the network,
we randomly mask the visual features φi and/or object coor-
dinates xi with independent probabilities of pφ = 0.25 and
px = 0.35.

The SGN consists of 5 layers. τe and τn are implemented
as 2-layer MLPs with 512 hidden and 128 output units. The
last layer of the SGN returns the outputs; the node features
(128-d), binary masks (16× 16) and bounding box coordi-



nates by 2-layer MLP with a hidden size of 128 (which is
needed to add or re-position objects).

CRN architecture details. The CRN architecture consists
of 5 cascaded refinement modules, with the output number
of channels being 1024, 512, 256, 128 and 64 respectively.
Each module consists of two convolutions (3 × 3), each
followed by batch normalization [3] and leaky Relu. The
output of each module is concatenated with a down-sampled
version of the initial input to the CRN. The initial input is
the concatenation of the predicted layout and the masked
image features. The generated images have a resolution of
64× 64.

SPADE architecture details. The SPADE architecture
used in this work contains 5 residual blocks. The output
number of channels is namely 1024, 512, 256, 128 and 64.
In each block, the layout is fed in the SPADE normalization
layer, while the image counterpart is concatenated with the
result. The global discriminator Dglobal contains two scales.

Full-image branch details. The image regions that we
randomly mask during training are replaced by Gaussian
noise. Image features are extracted using 32 convolutional
filters (1 × 1), followed by batch normalization and Relu
activation. Additionally, a mask is concatenated with the
image features that is 1 in the regions of interest (noise) and
0 otherwise, so that the areas to be modified are easier for
the network to identify.

Training settings. In all experiments presented in this pa-
per, the models were trained with Adam optimization [6]
with a base learning rate of 10−4. The weighting values for
different loss terms in our method are shown in Table 3. The
batch size for the images is 32. All objects in an image batch
are fed at the same time in the object-level units, i.e. SGN,
visual feature extractor and discriminator.

All models on VG were trained for 300k iterations and
on CLEVR for 40k iterations. Training on an Nvidia RTX
GPU takes about 3 days for VG and 4 hours for CLEVR.

Loss factor Weight CRN Weight SPADE

λg 0.01 1

λo 0.01 0.1

λa 0.1 0.1

λb 10 50
λf - 10
λp - 10

Table 3. Loss weighting values

4.3. Failure cases

In the proposed image manipulation task we have to re-
strict the feature encoding to prevent the encoder from “copy-
ing” the whole RoI, which is not desired if, for instance, we
want to re-position non-rigid objects, e.g. from “sitting” to
“standing”. While the model is able to retain general appear-
ance information such as colors and textures, it is true that,
as a side effect some visual properties of modified objects
are not recovered. For instance, the color of the green object
in Figure 4 a) is preserved but not the material.

The model does not adapt unchanged areas of the image
as a consequence of a change in the modified parts. For ex-
ample, shadows or reflections do not follow the re-positioned
objects, if those are not nodes of the graph and explicitly
marked as changing subject by the user, Figure 4 b).

In addition, similarly to other methods evaluated on Vi-
sual Genome, the quality of some close objects remains
limited, e.g. close-up of people eating, Figure 4 c). Also,
having a node “face” on animals, typically gives them a
human face.
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Figure 4. Illustration of failure cases.
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