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1. Network architecture details

Network backbone: We use ResNet-50 [3] as our back-
bone network and extract generic feature representations
from the last layer of the conv4 block. Table 1 illustrates the
details of our backbone. ResNet-50 is modified to have a to-
tal stride of 8 pixels, and the respective field is increased by
dilated convolutions [8]. An extra 1 × 1 convolutional lay-
er is added to reduce the feature channel to 256. For both
training and tracking, the template image and the test image
are cropped to sizes 127 × 127 and 255 × 255, respective-
ly. The resolutions of the template features and test image
features are 15 × 15 and 31 × 31, respectively. As in [4],
we crop the center 7×7 regions as the template features for
the Siamese tracking module. A PrPool layer with spatial
output size 7 × 7 is used to extract features for these RoIs.
Features for the target template are extracted by a 5× 5 Pr-
Pool layer.

Siamese tracking module: The architecture of the Siamese
tracking module in our method is shown in figure 1. The
similarity map and the distance offset map are respectively
obtained in the similarity learning branch and the regression
branch.

Spatial attention network: An hourglass network is used
in the pixel-correlation guided spatial attention module to
obtain spatial attention. The architecture is illustrated in
table 2.

Channel attention network: A shared MLP is used to cap-
ture channel-wise dependencies in the channel-wise corre-
lation guided channel attention module. The architecture is
illustrated in table 3.

Corner detection network: Two upsample networks are
used to learn heatmaps for the two corners. The architec-
ture of this network is illustrated in table 4. Two nearest
interpolation layers are employed to increase the resolution.
In order to balance efficiency and accuracy, we increase the
resolution to 31× 31.

layer template output size test output size structure
conv1 61 × 61 125 × 125 7 × 7, 64, stride 2

conv2 x 31 × 31 63 × 63

3 × 3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

 × 3

conv3 x 15 × 15 31 × 31

 1× 1, 128
3× 3, 128
1× 1, 512

 × 4

conv4 x 15 × 15 31 × 31

 1× 1, 256
3× 3, 256
1× 1, 1024

 × 6

adjust 15 × 15 31 × 31 1 × 1, 256

Table 1: Architecture of the backbone network.

2. More Ablation Experiments

Table 5 shows more results and complexity comparison
of different integration methods. These methods are evalu-
ated on the combined OTB2015 and UAV123 datasets. In
addition to the integration methods described in the paper,
we add two ablative methods named as OursMaxPool and
OursAvgPool. They respectively denote that we only use
a global max-pooling layer and a global average-pooling
layer to gather channel descriptors in the channel attention
module. The results show that we can achieve the best per-
formance by jointly using max-pooling and average-pooling
layers.

In our method, the second stage can be viewed as a
bounding box refinement process. Thus, we compare our
method with traditional bounding box regression model (de-
noted as BBoxReg). As in [7], BBoxReg concatenates the
features of the template and the RoI and uses the fully con-
nected layers to predict the refined bounding boxes. Note
that BBoxReg does not perform similarity learning in the
second stage, which is the same as our method. Table 6
shows that BBoxReg improves the baseline method, while
our method achieves better performance. We attribute this
to the proposed correlation-guided attention module, which
effectively exploits the relationship between the template
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Figure 1: Architecture of the Siamese tracking module.

layer output size structure
25 × 7 × 7

conv1 32 × 5 × 5
3 × 3, 32

BatchNorm
ReLU

conv2 32 × 3 × 3
3 × 3, 32

BatchNorm
ReLU

dconv1 32 × 5 × 5
3 × 3, 32

BatchNorm
ReLU

dconv2 1 × 7 × 7
3 × 3, 1
Sigmoid

Table 2: Architecture of the spatial attention network.

layer output size structure
256 × 1 × 1

fc1 64 × 1 × 1
1 × 1, 64

ReLU

fc2 256 × 1 × 1
1 × 1, 256
Sigmoid

Table 3: Architecture of the channel-wise attention net-
work.

and the RoI to improve the performance of corner detection.

3. Impact of Training Data

The GOT-10k dataset is used in our method since cor-
ner detection can benefit from high-quality training image
pairs. We compare our method with the state-of-the-art
Siamese tracker (SiamRPN++) without using the GOT-10k
dataset for training. Thus, our method has the same training
datasets with SiamRPN++. Table 7 shows the comparison
results on two challenging datasets, UAV123 and LaSOT.
Without training with GOT-10k, our method achieves better
performance compared to SiamRPN++. The results show
that our method achieves state-of-the-art performance.

layer output size structure
256 × 7 × 7

conv1 256 × 7 × 7
3 × 3, 256, padding=1

BatchNorm
ReLU

conv2 64 × 7 × 7
1 × 1, 64

BatchNorm
ReLU

interp1 64 × 15 × 15 Nearest interpolation

conv3 64 × 15 × 15
3 × 3, 64, padding=1

BatchNorm
ReLU

conv4 32 × 15 × 15
1 × 1, 32

BatchNorm
ReLU

interp2 32 × 31 × 31 Nearest interpolation

conv5 32 × 31 × 31
3 × 3, 32, padding=1

BatchNorm
ReLU

conv6 1 × 31 × 31 1 × 1, 1

Table 4: Architecture of the corner detection network.

4. Qualitative results
Figure 2 illustrates an example of the pixel-wise correla-

tion similarity maps. As can be seen, different parts of the
target are highlighted in different maps, and the outline of
the target is encoded in the entire set of similarity maps.

Figure 3 shows two examples of the spatial attention
maps and the detection results based on the heatmaps for
the corners. As the resolution of the spatial attention maps
is relatively small, we visualize the maps by resizing them
to an appropriate size. As can be seen, the spatial attention
maps highlight the top-left and bottom-right regions of the
target, where there is rich information for detecting the top-
left and bottom-right corners. The heatmaps for the top-left
and bottom-right corners are shown in one image, and the
detection results are obtained from the heatmaps using the
soft-argmax function [5].

Figure 4 shows the tracking results of the first stage and
the second stage of the proposed method. As can be seen,
the corner detection module significantly improves the qual-
ity of bounding box estimation in the first stage. Note that
the tracking result of the first stage in one frame is based
on the result of the second stage in previous frame. Without
the second stage, the Siamese tracker drifts easily due to the
accumulating errors.

Figure 6 shows some tracking results on eight chal-
lenging sequences. Our CGACD method is compared
with state-of-the-art trackers including SiamRPN++ [4],
ATOM [2], MDNet [6], and ECO [1].

5. Attribute-Based Results on OTB2015
Figure 5 shows the success plots of 10 trackers on 11

attributes of OTB2015. These attributes include variation
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Method PS (%) AUC (%) #Params MFLOPs
W/o template 81.8 62.0 1.31M 190
ConcatInte 83.1 62.5 2.49M 306
SiamInte 85.3 64.9 1.31M 190
ConcatAtt 84.0 63.7 1.69M 207
SiamAtt 85.2 65.1 1.51M 194
ChannelAtt 83.8 63.5 1.34M 191
SpatialAtt 85.4 65.3 1.36M 193
OursMaxPool 86.3 66.1 1.40M 193
OursAvgPool 85.8 65.6 1.40M 193
Ours 86.7 66.3 1.40M 193

Table 5: Comparison of different approaches to integrating
the template and the RoI on the combined OTB2015 and
UAV123 datasets.

Baseline BBoxReg Ours
PS (%) 82.7 85.6 87.2
AUC (%) 61.5 64.4 66.8

Table 6: Comparison results of bounding box regression
model and our method.

Trackers UAV123 LaSOT
PS (%) AUC (%) PSnorm (%) AUC (%)

SiamRPN++ 80.3 61.0 56.9 49.6
Ours 82.6 61.5 60.9 50.3

Table 7: Comparison results of SiamRPN++ and our
method using the same training datasets.

(IV), scale variation (SV), occlusion (OCC), deformation
(DEF), motion blur (MB), fast motion (FM), in-plane rota-
tion (IPR), out-of-plane rotation (OPR), out-of-view (OV),
background clutter (BC), and low resolution (LR). Our C-
GACD achieves high performance on all the attitudes.
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Figure 2: Visualization of the pixel-wise correlation simi-
larity maps. 25 similarity maps are obtained by calculating
the pixel-wise correlation between the template and the RoI
feature maps. Each map represents the similarity between
the corresponding pixel in the template feature maps and all
pixels in the RoI feature maps. Different parts of the target
are highlighted in different maps.
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Figure 3: Visualization of spatial attention maps and the
detection results based on the heatmaps for the corners.
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Success plots - deformation (44)
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Success plots - scale variation (64)
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Success plots - background clutter (31)
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Success plots - fast motion (39)
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Success plots - in-plane rotation (51)
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Success plots - illumination variation (38)
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Success plots - low resolution (9)
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Success plots - motion blur (29)
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Success plots - occlusion (49)
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Success plots - out-of-plane rotation (63)
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Success plots - out of view (14)
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Figure 5: The success plots on 11 attributes of OTB2015

The First StageThe Second Stage

Figure 4: Qualitative results of the first stage and the second
stage of the proposed method.
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Figure 6: Qualitative comparison of state-of-the-art trackers on OTB2015.

5


