
- Supplemental Material -
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are

Failing to Reproduce Spectral Distributions

The supplementary material of our paper contains addi-
tional details on the presented experiments, as well as some
support experiments that might help to get a better under-
standing of the spectral properties of up-convolution units.

1. Using Spectral Distortions to Detect Deep-
fakes

In this section, we provide more detailed results of the
experiments presented in section 4.1 of the paper.

1.1. More Details on the used Datasets

1.1.1 Faces-HQ

To the best of our knowledge, currently no public dataset is
providing high resolution images with annotated fake and
real faces. Therefore, we have created our own data set from
established sources, called Faces-HQ1. In order to have a
sufficient variety of faces, we have chosen to download and
label the images available from the CelebA-HQ data set
[3], Flickr-Faces-HQ data set [4], 100K Faces project [1]
and www.thispersondoesnotexist.com. In total, we have col-
lected 40K high quality images, half of them real and the
other half fake faces. Table 1 contains a summary.
Training Setting: we divide the transformed data into
training and testing sets, with 20% for the testing stage and
use the remaining 80% as the training set. Then, we train
a classifier with the training data and finally evaluate the
accuracy on the testing set.

# of samples category label
CelebA-HQ data set [3] 10000 Real 0

Flickr-Faces-HQ data set [4] 10000 Real 0
100K Faces project [1] 10000 Fake 1

www.thispersondoesnotexist.com 10000 Fake 1

Table 1: Faces-HQ data set structure.

1Faces-HQ data has a size of 19GB. Download:
https://cutt.ly/6enDLYG

1.1.2 CelebA

The CelebFaces Attributes (CelebA) dataset [6] consists of
202,599 celebrity face images with 40 variations in facial at-
tributes. The dimensions of the face images are 178x218x3,
which can be considered to be a medium-resolution in our
context.
Training Setting: While we can use the real images from
the CelebA dataset directly, we need to generate the fake
examples on our own.Therefore we use the real dataset to
train one DCGAN [8], one DRAGAN [5], one LSGAN
[7] and one WGAN-GP [2] to generate realistic fake im-
ages. We split the dataset into 162,770 images for training
and 39,829 for testing, and we crop and resize the initial
178x218x3 size images to 128x128x3. Once the model is
trained, we can conduct the classification experiments on
medium-resolution scale.

1.1.3 FaceForensics++

FaceForensics++ [9] is a collection of image forensic
datasets, containing video sequences that have been mod-
ified with different automated face manipulation methods.
One subset is the DeepFakeDetection Dataset, which con-
tains 363 original sequences from 28 paid actors in 16 dif-
ferent scenes as well as over 3000 manipulated videos us-
ing DeepFakes and their corresponding binary masks. All
videos contain a trackable, mostly frontal face without oc-
clusions which enables automated tampering methods to
generate realistic forgeries.
Training Setting: the employed pipeline for this dataset is
the same as for Faces-HQ dataset and CelebA, but with an
additional block. Since the DeepFakeDetection dataset con-
tains videos, we first need to extract the frame and then crop
the inner faces from them. Due to the different content of
the scenes of the videos, these cropped faces have differ-
ent sizes. Therefore, we interpolate the 1D Power Spectrum
to a fix size (300) and normalizes it dividing it by the 0th

frequency component.



1.2. Experimental Results

1.2.1 Spectral Distributions

The following figures 1, 2 and 3 show the spectral (AI) dis-
tributions of all datasets. In all three cases, it is evident that
a classifier should be able to separate real and fake samples.
Also, based on our theoretical analysis (see section 2.3 in
the paper), one can assume that the generators in used Face-
HQ and FaceForensics++ datasets used up+conv based up-
convolutions or successively blurred the generated images
(due to the drop in high frequencies). CelebA based fakes
used transconv.
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Figure 1: Statistics (mean and variance) of the Faces-HQ
dataset.
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Figure 2: Statistics (mean and variance) of the FaceForen-
sics++, DeepFakeDetection dataset.

Figure 4 gives some additional data examples and their
according spectral properties for the FaceForensics++ data.

1.2.2 T-SNE Evaluation

Figure 5 shows the clustering properties of our AI features.
It is quite obvious that a classifier should not have problems
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Figure 3: Statistics (mean and variance) of the CelebA
dataset: average of images generated by the different GAN
schemes (DCGAN, DRAGAN, LSGAN and WGAN-GP).

Figure 4: FaceForensics++ data. Top: example of one real
face (left) and two deepfake faces, fake 1 (center) and fake
2 (right). Notice that the modifications only affect the in-
ner face. Bottom: normalized and interpolated 1D Power
Spectrum from the previous images.

to separate both classes (real and fake).

1.2.3 Detection Results Depending on the Number of
Available Samples

In this section, we show some additional results on the
DeepFake detection task (table 1 in the paper). In tables
2, 3 and 4, we focus on the effect of the available number
of data samples during training. As shown in the paper, our
approach works quite well in an unsupervised setting and
needs as little as 16 annotated training samples to achieve



Figure 5: T-SNE visualization of 1D Power Spectrum on a
random subset from Faces-HQ data set. We used a perplex-
ity of 4 and 4000 iterations to produce the plot.

100% classification accuracy in a supervised setting.

80% (train) - 20% (test)
# samples SVM Logistic Reg. K-Means

4000 100% 100% 82%
1000 100% 100% 82%
100 100% 100% 81%
20 100% 100% 75%

Table 2: Faces-HQ: Test accuracy using SVM, logistic re-
gression and k-means under different data settings.

80% (train) - 20% (test)
# samples SVM Logistic Reg. K-Means

2000 100% 100% 96%
100 100% 95% 100%
20 100% 85% 100%

Table 3: CelebA: Test accuracy using SVM, logistic regres-
sion and k-means.

80% (train) - 20% (test)
# samples SVM Logistic Reg.

2000 85% 78%
1000 82% 76%
200 77% 73%
20 66% 76%

Table 4: FaceForensics++: Test accuracy using SVM clas-
sifier and logistic regression classifier under different data
settings. Evaluated on single frames.

2. Spectral Regularization on Auto-Encoder
In this second section, we show some additional results

from our AE experiments (see figure 4 of the paper).

2.1. Loss during Training

Figure 6 shows the evaluation of the loss (see equations
10 and 11 in the paper) with and without spectral regulariza-
tion for a decoder with 3 convolutional layers and 3 filters
of kernel size 5× 5 each.
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Figure 6: Evolution of the different losses that define the
Lfinal from our AE. Top: Mean Square Error (MSE) dur-
ing the training (LReconstruction). Bottom: Binary Cross-
Entropy loss (BCE) during the training (LSpectral).

These results show that the spectral regularization also
has a positive effect on the convergence of the AE and the
quality of the generated output images (in terms of MSE).

2.2. Effect of the Spectral Regularization

Figure 7 shows the impact of the spectral regularization
on the AE problem. We can notice how both transconv
and up+conv suffer from different behaviour on the fre-
quency spectrum domain, specially in high frequency com-
ponents. Nevertheless, after applying our spectral regular-
ization technique, the results get much closer to the real 1D
Power Spectrum distribution, generating images closer to
the real distribution.
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Figure 7: AE results for the baselines (transconv and
up+conv) and for the proposal with spectral loss (cor-
rected). The corrected AE has 3 additional convolutional
layers after the last transconv layer. Each layer has 32 fil-
ters of size 5x5 and λ = 0.5

2.3. Effect of different Topologies

In this experiment, we evaluate the impact of different
topology design choices. Figure 8 shows statistics of the
spectral distributions for some topologies:

• Real: original face images from CelebA

• DCGAN v1: a DCGAN topology with spectral reg-
ularization and one convolution layer (32 5x5 filters)
after the last two up-convolutions.

• DCGAN v2: a DCGAN topology with spectral regu-
larization and two convolution layers (32 5x5 filters)
after the last up-convolution.

• DCGAN v3: a DCGAN topology with spectral reg-
ularization and one convolution layer (32 5x5 filters)
after the every up-convolution.

• DCGAN v4: a DCGAN topology with spectral regu-
larization and three convolution layers (32 5x5 filters)
after the last up-convolution.

Following the theoretical analysis and after a rough topol-
ogy search for verification, we conclude that it is suffi-
cient to add 3 5x5 convolutional layers after the last up-
convolution in order to utilize the spectral regularization.
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