
Differentiable Adaptive Computation Time for Visual Reasoning

Cristóbal Eyzaguirre and Álvaro Soto
Pontificia Universidad Católica de Chile
ceyzaguirre4@uc.cl, asoto@ing.puc.cl

1. Supplementary Material
1.1. Implementation details

Unless otherwise stated, all models use the default pa-
rameters from the official implementation of MAC 1. No-
table differences between these and those in the original pa-
per [3] include using different dropout rates for different
sections of the network (92% on output of biLSTM, 82%
on convolutional filters), initializing weights by sampling
from the Xavier uniform distribution [2], setting the ques-
tion as the first control, and using a LR scheduler. We use a
gate bias of 1.0 for the gated MAC as this achieves the best
performance in the original paper; however, unless stated
otherwise, we do not bias our adaptive computation algo-
rithms.

Experimental results in Section 4 are obtained by train-
ing from scratch the MAC network three times and then
using the resulting weights to train multiple other models.
Each of the pre-trained MACs are further trained to obtain:
four variants of DACT, corresponding to different values of
λ; and seven variants of ACT, six with different λ’s and one
without ponder penalty. Training the variants is done by
reseting all schedulers and optimizers and then reinitializ-
ing a new MAC with its corresponding gating mechanism.
We then overwrite the pertinent weights with the pre-trained
ones and train for another 30 epochs saving the best model
according to the monitored precision. This is done to reduce
the time needed to train all models while still providing sig-
nificant mean and variance values for relevant metrics (i.e.
precision and steps). Figure 1 shows how the average num-
ber of steps used by DACT-MACs for CLEVR [5] adapts
from the original 12 step algorithm learnt during the pre-
training phase of the 12-step non-adaptive MACs, progres-
sively reducing the total computation needed by iterating
fewer times.

Few changes were needed in order to apply adaptive
MACs to GQA [4]. Instead of using regions of the image
(top-down attention), our knowledge-base is composed of
region detections (bottom-up) [1]. We also use 1x1 con-
volution filters instead of 3x3 for the same reason. Addi-

1https://github.com/stanfordnlp/mac-network

Figure 1. Curves illustrate change in the number of steps employed
by DACT-MACs as training progresses. For reference, we in-
clude the case of standard non-adaptive MAC as a dotted line (12
steps). Note that in the first epoch the model uses more steps than
the value to which it converges, following a behavior similar to
the pre-trained MAC, while subsequent epochs reduce computa-
tion. Using higher ponder costs translates into less variability in
the number of steps used, shown as translucent bands of the same
color.

tionally, we use a 4 step non-adaptive MAC during the pre-
training phase as this is the recommended number of steps
for the model [4] and also yielded the best results in our ex-
periments. The resulting accuracies, along with the mean
number of steps used to attain them, are shown in Table 1.

Each question in GQA has been assigned one of 105
question types according to the operations needed to answer
the question. Therefore, as was the case with question fam-
ilies in CLEVR, we group questions by type with the un-
derlying assumption being that all questions of a type have
similar complexities. Figure 2 validates that, as in CLEVR,
DACT is adapting computation, and the total amount of
computation varies following the time penalty.

1.2. Question Families

For any given synthetic image in the CLEVR dataset,
a series of queries are generated by chaining a sequence

1



Figure 2. The figure shows the the distribution of the number of steps used by DACT for each one of the 105 different question types in
the GQA dataset. In order from top (a) to bottom (c) we show how decreasing the time penalty (5× 10−2, 1× 10−2, 5× 10−3 for a,b, c
respectively) results in increased total computation.

Method Ponder Cost Steps Accuracy
MAC+Gate NA 2 77.51
MAC+Gate NA 3 77.52
MAC+Gate NA 4 77.52
MAC+Gate NA 5 77.36
ACT 1× 10−2 1.99 77.17
ACT 1× 10−3 2.26 77.04
ACT 1× 10−4 2.31 77.21
ACT 0 2.15 77.20
DACT 5× 10−2 1.63 77.23
DACT 1× 10−2 2.77 77.26
DACT 5× 10−3 3.05 77.35
DACT 1× 10−3 3.69 77.31

Table 1. Our proposed method (DACT) achieved better accuracy
than existing adaptive algorithms on the GQA test-dev set, while
also adapting computation coherently to the values taken by the
ponder cost hyper-parameter. However, the task did not bene-
fit from increased computation, so all adaptive models incur in
a small metric loss compared to non-adaptive variants.

of modular operations such as count, filter, compare, etc.
These functional programs can then be expressed in nat-
ural language in multiple ways, for instance translating
count(filtercolor(red, scene())) into “How many <C>
<M> things are there?”, a translation which is accom-
plished by instantiating the text templates specific to each
program following [5]. As a result, questions with the same
functional program can be clustered together into question
families that share a similar complexity. Figure 3 includes
a text template for each of the question families present in
CLEVR, sorted by the average number of steps used for
validation questions belonging to the specific family.

1.3. Proofs

In this section we prove that our method for building the
final answer Y can be interpreted as attending the interme-
diate outputs yn, with attention weights that follow a valid
probability distribution. We include two proofs by induc-
tion to show that, for any n, the accumulated answer an can
be expressed as a weighted sum of all intermediate outputs

up to the nth step, and that these weights always add up to
one.
Proposition. Every accumulated answer an can be ex-
pressed as a weighted sum of all intermediate outputs up
to the nth step.

Proof. Assume αi exists for each yi such that every an−1 =
yn−1αn−1 + · · · + y0α0. This is trivial to prove for n = 1
as p0 = 1 makes a1 = y1p0 + a0(1− p0) become a1 = y1.

an = ynpn−1 + an−1(1− pn−1)

= ynpn−1 + (αn−1yn−1 + · · ·+ α0y0)(1− pn−1)

= ynpn−1 +

n−1∑
i=0

yi(αi(1− pn−1))

Proposition. Every accumulated answer an can be ex-
pressed as a weighted sum of all intermediate outputs up
to the nth step, and the sum of the weights is equal to one.

Proof. The base case is again trivial to prove since p0 = 1
when n = 1. Using the proof above we define βi to be the
weights used to express an as a weighed sum of yi ∀i ∈
[1, n].

βi =

{
pn−1 if i = n

αi(1− pn−1) otherwise

Assume αi exists for each yi such that every an−1 =
αn−1yn−1 + · · ·+ α0y0 and

∑n−1
i=0 αi = 1.

n∑
i=0

βi = pn−1 +

n−1∑
i=0

αi(1− pn−1)

= pn−1 +

n−1∑
i=0

αi − pn−1

n−1∑
i=0

αi

= pn−1 + 1− pn−1

= 1



Figure 3. The image above shows the average number of steps used by DACT-MAC (λ = 5× 10−3) for each of the question families
present in CLEVR, along with one template for each family to typify the whole group. Following [5], each question is generated by
replacing <Z>, <C>, <M>, and <S> with the size, color, material and/or shape of objects present in the image. Note that families with
fewer supporting objects are more likely to be answered in less steps, and finding the number of objects that possess a pair of qualities
([both]) is regarded as generally easier than finding those that possess [either].



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,

Mark Johnson, Stephen Gould, and Lei Zhang. Bottom-up and
top-down attention for image captioning and visual question
answering. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 6077–6086, 2018.
1

[2] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256, 2010. 1

[3] D. Hudson and C.D. Manning. Compositional attention net-
works for machine reasoning. In ICLR, 2018. 1

[4] Drew A Hudson and Christopher D Manning. Gqa: A
new dataset for real-world visual reasoning and compositional
question answering. Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019. 1

[5] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C. Lawrence Zitnick, and Ross B. Girshick.
CLEVR: A diagnostic dataset for compositional language and
elementary visual reasoning. CoRR, abs/1612.06890, 2016. 1,
2, 3


