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A. Other formulations

Along with the two minor based formulations described
in the main manuscript, two alternate formulations of both
Chicago and Cleveland were explored, as outlined below.
Experimental results using synthetic data for these two al-
ternate formulations of Chicago and Cleveland, as well as
the minor formulation of Cleveland are discussed below in
Section C.

In addition, other “non-minor” formulations of Chicago
were explored and implemented in MINUS for optimization
and testing. Two important formulations are worth mention-
ing. The first is obtained by eliminating depths and other
scalars from the original equations from Section 2.1 of the
main paper, ending with an 11 × 11 system of equations
only in the relative poses R2, R3, t2, t3 modulo global scale
– embodying the calibrated trifocal tensor in different forms
depending on the representation employed. The second re-
duction occurs after further eliminating translations to ob-
tain a 6 × 6 system of equations in R2, R3, which can give
better performance for the linear solves within Algorithm 1.
The results of using these formulations and other more ag-
gressive optimization strategies within MINUS are outlined

∗Contact: rfabbri@gmail.com, †Czech Institute of Informat-
ics, Robotics and Cybernetics, Czech Technical University in Prague. RF
is supported by UERJ Prociência and FAPERJ Jovem Cientista do Nosso
Estado E-26/201.557/2014. TD and AL are supported by NSF DMS-
1151297. JDH and MHR are supported by NSF CCF-1812746, with
additional support for JDH from ONR N00014-16-1-2722 and for MHR
from Schmitt Leadership Fellowship in Science and Engineering. BK
and HF are supported by the NSF grant IIS-1910530. TP is supported
by the EU Regional Development Fund IMPACT CZ.02.1.01/0.0/0.0/15
003/0000468 and EU H2020 project ARtwin 856994. This work was initi-
ated while most authors were in residence at Brown University’s Institute
for Computational and Experimental Research in Mathematics – ICERM,
in Providence, RI, during the Fall 2018 and Spring 2019 semesters (NSF
DMS-1439786 and the Simons Foundation grant 507536).

below in Section D.

Alternate Chicago The first set of vector equations, (1) in
the main paper, is associated to viewing points p = 1, 2, 3
from cameras v = 1, 2, 3. Eliminate tv using one such
equation for p = 3 and rearrange to:

αpvxpv − α3vx3v = Rv(αp1xp1 − α31x31), (1)

for v = 2, 3 and p = 1, 2, 3. The second set of vector
equations used by this formulation is associated to viewing
tangents from cameras v = 1, 2, 3, which is (5) in the main
paper. Together, (1) above and (5) of the main paper are a
set of 24 scalar equations with the following unknowns:

(Rv, tv), v = 2, 3; αpv, v = 1, 2, 3, p = 1, 2, 3;
(εpv, µpv), v = 1, 2, 3, p = 1, 2,

which are used with our additional Bertini solver in regards
to the non-minor (i.e., without using determinantal “visi-
ble lines” formulation of Section 3.1 of the main paper)
Chicago formulation and experimentation.

Alternate Cleveland The three labeled points are the
same, therefore (1) still applies. With the description in the
main manuscript, for the free 3D line L, we let (pv,qv) be
two distinct points in three views. The back-projection of
the image line is a plane whose equation in local coordi-
nates is given in terms of a vector nv normal to the plane:

n>
v x = 0, where nv = pv × qv .

Point P chosen as P = αqp1, must lie in the back-projection
planes in the other two views, giving

n>
v (Rvαqp1 + tv) = 0, (2)
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for views 2 and 3. Eliminating the translations and rear-
ranging we have:

α3vn>
v x3v = n>

v Rv(α31x31 − αqp1). (3)

In addition, L must lie in all three back-projection planes,
thus

n>
1 v = 0, n>

2 R2v = 0, n>
3 R3v = 0. (4)

The additional solver referenced below for this non-minor
Cleveland formulation is defined by the polynomial system
of (1), (3), and (4) with the following unknowns:

Rv, v = 2, 3; αq; v;
αpv, p = 1, 2, 3, v = 1, 2, 3.

Of course, we note that the above equations can partially be
represented as determinants equal to zero; by non-minor we
simply mean it is not focused on minors, but that they are a
by-product of another type of geometrical reasoning.

B. Clarifying the proof of degrees
In the main paper, a proof regarding the number of 312

degrees and 216 for Chicago and Cleveland, respectively,
was provided focusing on numerical arguments. These ar-
guments are mathematically sound due to guarantees on the
behavior of polynomial systems for these numerical meth-
ods given our assumptions listed within Section 2.2 of the
main manuscript. In our main manuscript we also sketched
how the proof would proceed by means of symbolic tech-
niques. We now provide details on such a procedure, which
is standard practice [2, 3].

To obtain the degree of the system, it is enough to give
random values to all symbolic parameters (or coefficients),
and then compute the degree of the resulting (specialized)
system. This can be performed over Q, as briefly described
in the paper, or it may be more feasible to carry out compu-
tations modulo p, for a suitable prime number p. By making
sure that the random values of the parameters are generic
enough to be a representative of the general ones, and that
the prime that we use is not a bad prime (for example that
the modulo p operation does not kill terms of the polyno-
mials), the computation of the degree is as mathematically
sound as an analytic-geometric proof by hand (which would
be very hard for this problem size).

Once we compute, over Q, a lexicographical Gröbner ba-
sis, its last polynomial is a univariate polynomial of degree
D, which is the problem degree. For Chicago, D = 312 is
obtained, and for cleveland D = 216. Let the single vari-
able of this last univariate polynomial be x. By solving this
polynomial by usual means, one backsubstitutes x and thus
finds a solution for the system. The procedure over the ra-
tionals is time consuming (several hours to days), so as a
solver, this generic symbolic method as such is not useful
in practice beyond proofs and other analysis.

Figure 1. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the minor formulation of Cleveland.

Figure 2. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the alternate formulation of Chicago.

Figure 3. Errors of computed parameters with respect to the
ground truth are small showing that the solver is numerically sta-
ble for the alternate formulation of Cleveland.

C. Additional Synthetic Experiments

Synthetic experiments were completed for the minor for-
mulation of Cleveland discussed in Section 3.1 in the main
manuscript, as well as the other formulations outlined above
in Section A. These experiments are equivalent to those out-
lined in Section 4 in the main manuscript under the heading
synthetic experiments.

For the three separate formulations, minor Cleveland and
alternate Chicago and Cleveland, it was found that pose esti-
mation errors are negligible as shown in Figures 1, 2, and 3,
respectively.

The next set of experiments show the behavior when the
correspondences are correct, but noisy. Using the same pro-
cess as described in detail in Section 4 of the main paper.
The result of the minor formulation of Cleveland and alter-
nate formulations of Chicago and Cleveland are shown in
Figures 4, 5, and 6, respectively. For each formulation, the
median of the translation and rotation error are low, but due
to the relatively high failure rate of these three formulations,
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there are several failures that effect the data. However, these
failure cases can be detected and resolved by thresholding
the maximum inlier ratio in RANSAC. In addition, the aver-
age reprojection error with respect to the ground truth point
correspondences, also in Figures 4, 5, and 6, shows that for
most of the test cases we have a stable and reasonable re-
projection error. Again, the cases with large reprojection
error can be ignored by thresholding maximum inlier ratio
in RANSAC.

Figure 4. Distribution of trifocal pose error for the minor formula-
tion of Cleveland in the form of translational and rotational error
between cameras 1 and 2 (blue) and cameras 1 and 3 (green), as
well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

Figure 5. Distribution of trifocal pose error for the alternate formu-
lation of Chicago in the form of translational and rotational error
between cameras 1 and 2 (blue) and cameras 1 and 3 (green), as
well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

These results on synthetic data sets, paired with the com-
putational efficiency of the solvers for various formulations,
highlight the efficacy of the homotopy continuation meth-
ods and their ability to solve these trifocal problems in a
competitive nature.

Computational efficiency For the minor formulation of
Cleveland, each run of our more general purpose solver us-

Figure 6. Distribution of trifocal pose error for the alternate for-
mulation of Cleveland in the form of translational and rotational
error between cameras 1 and 2 (blue) and cameras 1 and 3 (green),
as well as the reprojection error, plotted against the level of feature
localization noise (left) and orientation noise (right).

ing Bertini takes about 8.97 seconds on average with a fail-
ure rate of about 17.9%. For the alternate formulation of
Chicago, each run takes about 19.69 seconds on average
with a failure rate of 12.4% and for the alternate formula-
tion of Cleveland, each run takes about 11.46 seconds on
average with a failure rate of 3.2%. All of these tests were
done on an AMD Opteron 6378 2.4 GHz processor using
12 threads.

Implementation The minor formulation of Cleveland
and the alternate formulations of both Chicago and Cleve-
land were implemented within a more general purpose
solver involving Bertini, which utilizes the parameter ho-
motopy method described in Algorithm 1 in the main pa-
per. They were not implemented in MINUS since this triv-
ial operation would only change speed, and Chicago was
the focus of the paper exemplifying this process of tran-
scribing a solver to an optimized C++ version. There are
improvements that can be made to precision and error anal-
ysis using adaptive multiprecision path tracking [1], yet this
comes at the expense of speed. In addition, other settings
within Bertini can be employed, at the expense of reliability
and causing a potential increase in failure rate. There is po-
tential for other optimization, but that has not been explored
here.

D. Tuning of the main solver MINUS
As stated in the main manuscript, MINUS can run at the

milisecond scale with the 14 × 14 formulation, at the cost
of increased failure rate. We have observed that in practice
such failure rate might not be important for RANSAC, and
can be controlled by performing tests to the input points and
lines to rule out near-coplanar or near-collinear configura-
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tions, which make the system close to underconstrained.
In optimizing MINUS, one can constrain the number of

iterations per solution path, which would yield the most
effective speedup. In fact, in carrying extensive experi-
ments with the synthetic data reported in the paper, after
10000 random solves, the maximum number of iterations
for paths leading to ground-truth solutions was 1119, and
for the other paths this was 253787. The discrepancy is
very large. Given that the solve is about 1 microseconds per
iteration, this leads to very good prospects.

Another important study is regarding the conditioning of
the linearized homotopies (Jacobian matrices) as one varies
the formulation. Yet another very promising idea is to vary
the start system. Presently, the start system is precom-
puted from random parameters for the equations using mon-
odromy. The start system can instead be sampled from the
view-sphere for our synthetic data, and the closest camera
could be selected matching a similar configuration of point-
tangents.

In practice, we observed the following effective opti-
mizations to the current code. First, the most important pa-
rameter to vary is the maximum number of correction steps
(see Algorithm 1 in the paper); a maximum of 3 is the safe
default. Increasing it to anywhere from 4 to 7 gets the run-
time down to 464ms. Another is the corrector tolerance:
by increasing it 10000x, MINUS will run in 200ms. This
parameter can be seen by inspecting our published source
code. It affects how many correction iterations are per-
formed. The error rate for these extreme cases of 200ms
can be as high as 50%. However, we believe that by per-
forming less strict tests on reprojection error, the failure rate
can be significantly lowered.

The next step for optimizing MINUS is to determine
how to prune paths that take a significant length of time
to track. Acceleration using SIMD has been studied, but by
analyzing assembly output, most operations (complex vec-
tor multiplications and additions) are currently auto vector-
ized. Our tests point to the fact that reducing the represen-
tation to, say 6 × 6, would provide strong improvements
if ill-conditioning is taken care of. They also indicate that
this would improve linear-algebra solves, evaluator lengths,
and instruction cache misses. These implementations are
currently ongoing.

E. Creation of Mug Dataset
In this work, we created a feature-less mug dataset in-

spired by Nurutdinova et al. [5]. The reason we didn’t
use the original dataset from [5] is because the occlusion
between mug and calibration pattern makes removing the
calibration pattern cumbersome. Ten camera poses are set
to capture 10 images where the calibration pattern is not
occluded. After capturing images, the MATLAB calibra-
tion toolbox was used to generate the ground-truth cam-

Figure 7. In construction of the mug dataset, a calibration pattern
was first placed to generate the ground truth configuration of cam-
eras. Next, the calibration pattern was removed using image in-
painting for testing.

Figure 8. Trifocal relative pose estimation for additional cases
from the EPFL dataset. For each row, image triplets samples are
shown. The estimation results are shown on the right. Ground
truth poses are in solid green and estimated poses are in red.

era pose with manually marked correspondence points on
the checkerboard. Once the ground-truth was extracted, the
checkerboard area was marked and deleted manually, fol-
lowed by image inpainting to fill the gap in the image, as
shown in Figure 7.

F. Additional Real Experiments
More real experiments that were not shown in the main

paper are shown in this section. First, for texture-rich im-
ages, more cases from the EPFL dataset are shown in Fig-
ure 8 for the Chicago problem. Second, we include a quan-
titative comparison to other trifocal methods reported in [4]
for the Chicago problem, as shown in Table 1. As in [4], we
compare using the two datasets Fountain P-11 and Herz-
Jesu-P8, illustrating that our method is comparable to or
better than other trifocal methods.
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Methods R error (deg) T error (deg)
TFT-L 0.292 0.638
TFT-R 0.257 0.534
TFT-N 0.337 0.548
TFT-FP 0.283 0.618
TFT-PH 0.269 0.537

MINUS (Ours) 0.137 0.673
Table 1. The pose error comparison between our method with other
trifocal methods. Observe that our method has better rotation error
and comparable translation error.
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