Supplementary file for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping"

Hao-Shu Fang, Chenxi Wang, Minghao Gou. Cewu Lu¹ Shanghai Jiao Tong University

fhaoshu@gmail.com, {wcx1997,gmh2015,lucewu}@sjtu.edu.cn

1. Data Collection

We provide the detailed settings of our data collection process in Figure 1. (a) Both the RealSense and Kinect camera are fixed on the end link of a robot arm. (b) 256 data collection points are sampled from a quarter sphere.

2. Grasp Pose NMS

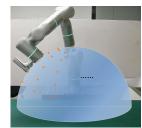
For two grasps G_1 and G_2 , we define grasp pose distance $D(G_1, G_2)$ as a tuple:

$$D(\mathbf{G}_1, \mathbf{G}_2) = (d_t(\mathbf{G}_1, \mathbf{G}_2), d_\alpha(\mathbf{G}_1, \mathbf{G}_2)), \qquad (1)$$

where $d_t(\mathbf{G}_1, \mathbf{G}_2)$ and $d_\alpha(\mathbf{G}_1, \mathbf{G}_2)$) denote translation distance and rotation distance of two grasps respectively. Let a grasp pose **G** be denoted by a translation vector **t** and a rotation matrix **R**, then $d_t(\cdot)$ an $d_\alpha(\cdot)$ is defined as:

$$d_t(\mathbf{G}_1, \mathbf{G}_2) = ||\mathbf{t}_1 - \mathbf{t}_2||,$$

$$d_\alpha(\mathbf{G}_1, \mathbf{G}_2) = \arccos \frac{1}{2} (\operatorname{tr}(R_1 \cdot R_2^{\mathrm{T}}) - 1),$$
 (2)


where $tr(\mathbf{M})$ denotes the trace of matrix \mathbf{M} .

Since translation and rotation are not in the same metric space, we define the NMS threshold as a tuple too. Let $TH = (th_d, th_\alpha)$, we say $D(\mathbf{G}_1, \mathbf{G}_2) < TH$ if and only if

$$d_t(\mathbf{G}_1, \mathbf{G}_2) < th_d, \quad d_\alpha(\mathbf{G}_1, \mathbf{G}_2) < th_\alpha.$$
(3)

Based on the tuple metric, two grasps are merged when their distance is lower than TH. Meanwhile, only the top K grasps from each object are considered according to confidence scores and other grasps are omitted. In evaluation, we set $th_d = 3 \text{ cm}$, $th_{\alpha} = 15$ degree and K = 10.

(a) Camera Configuration (b) Capturing Points Figure 1. The setting of data collection.