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In the supplementary file, we first present in detail the
procedures for annotating images in the Smartphone Pho-
tography Attribute and Quality (SPAQ) database. Next, we
describe the strategies for outlier detection and subject re-
moval, and discuss the reliability of the collected subjective
data. Finally, we provide more details and validation results
of the proposed blind image quality assessment (BIQA)
models based on SPAQ.

1. More about SPAQ

As stated in the manuscript, SPAQ collects so far the
richest annotations for each image, including image qual-
ity, image attributes, and scene category labels in a well-
controlled laboratory environment. In the following, we
present more details about SPAQ, including database con-
struction and subjective testing.

1.1. Database Construction

We use 66 smartphones from eleven manufacturers to
construct SPAQ of 11, 125 realistically distorted images
(see Table S1). A subset of 3, 453 pictures of the same
visual scenes are capture with controlled scene configura-
tions and camera settings. As mentioned in Section 4.4, we
select 1, 000 images from this subset to rank smartphone
cameras. Figure S1 shows 20 images captured by different
smartphone cameras with the out-of-focus configuration.

1.2. Subjective Testing

1.2.1 Testing Environment

To obtain reliable human annotations for both quality rating
and scene classification, we conduct subjective experiments
in a well-controlled laboratory environment using five LCD
monitors at a resolution of 1920 × 1080 pixels, which are
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calibrated in accordance with ITU-T BT.500 recommenda-
tions [S1]. The ambient illumination does not directly re-
flect off the displays. Each participant requires normal or
corrected-to-normal visual acuity with correct color vision.
Participants are allowed to move their positions to get closer
or further away from the screen for comfortable viewing ex-
perience. In our subjective experiment, the male to female
ratio is about 3 : 2, and their ages are between 18 and 35.

1.2.2 Image Quality

Before the subjective experiment, each participant goes
through a training phase, where ten images independent of
the testing phase are displayed. Nine of them are provided
with reference ratings and detailed instructions. Participants
are asked to read the instructions carefully and reminded to
focus on image quality rather than image aesthetics. The
tenth image without any instruction should be rated by par-
ticipants as practice. The subjective scores in the training
phase are not recorded.

During the testing phase, each participant provides sub-
jective ratings for 80 images in one session, and is involved
in at most two sessions with a five-minute break in-between.
The 80 images in each session are composed of two parts:
the first part includes 75 images selected randomly from
11, 125 images; the second part includes five duplicated
images selected randomly from the 75 images in the first
part. Eventually, we finish with 2, 330 sessions, and collect
186, 400 subjective ratings in total. Each image is rated at
least 15 times.

1.2.3 Image Attributes

Besides image quality, we ask participants to provide five
continuous image attribute scores from 0 to 100, represent-
ing the degrees of brightness, colorfulness, contrast, noisi-
ness, and sharpness. A low brightness score indicates that
the image is poorly exposed. An image with more chro-
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Manufacturer Huawei Apple Vivo Oppo Xiaomi Nubia Meitu Samsung Meizu Gionee Letv
# cameras 22 8 10 9 8 3 5 7 1 1 1
# images 3, 086 2, 063 1, 369 1, 127 1, 083 882 668 620 149 63 15

Table S1. The number of images by different smartphones from different manufacturers.
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Figure S1. Sample images captured by 20 smartphone cameras with the out-of-focus configuration. (a) Meitu V6, MOS = 34.62. (b) Apple
iPhone 6, MOS = 33.09. (c) Meitu M6, MOS = 34.25. (d) Samsung SM-G9200, MOS = 40.67. (e) Xiaomi MIX 2, MOS = 41.67. (f)
Oppo A33m, MOS = 39.00. (g) Huawei BLA-AL00, MOS = 40.25. (h) Oppo R9 Plusm A, MOS = 38.00. (i) Meizu M5 Note, MOS =
27.89. (j) Oppo R9s, MOS = 27.44. (k) Meitu T8, MOS = 40.00. (l) Huawei MLA-AL10, MOS = 32.44. (m) Vivo X7, MOS = 24.25. (n)
Apple iPhone SE, MOS = 39.43. (o) Huawei TAG-TL00, MOS = 35.33. (p) Meitu M4, MOS = 27.29. (q) Samsung SM-G9006V, MOS =
21.43. (r) Xiaomi MI 6, MOS = 34.71. (s) Huawei PRA-AL00, MOS = 28.00. (t) Apple iPhone 6s Plus, MOS = 33.33.

matic information is given a higher attribute score for color-
fulness. An image with reduced contrast is rated with a low
contrast score. An image containing a great amount of sen-

sor noise leads to a high noisiness score. The attribute score
for sharpness is inversely proportional to the blur level, sug-
gesting that a blurry image should be rated with a low score.
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Figure S2. Sample images of typical realistic camera distortions in SPAQ. (a) Under-exposure. (b) Over-exposure. (c) Camera motion
blurring. (d) Object motion blurring. (e) Out-of-focus blurring. (f) Sensor noise. (g) Contrast reduction. (h) Mixture of multiple distortions.

1.2.4 Scene Categories

In order to exploit the relationship between scene semantics
and image quality, we classify an image into nine scene cat-
egories, including animal, cityscape, human, indoor scene,
landscape, night scene, plant, still life, and others. Each
image may be associate with multiple scene category la-
bels. For example, the image in Figure 2 (b) is labeled with
animal and human categories for its content: “humans are
playing with a dog”. During subjective testing, we remind
the subjects to pay attention to foreground objects for scene
classification. Five subjects experienced in computer vision
annotate the whole 11, 125 images. When there is disagree-
ment between human annotations, majority vote is used to
determine the final label.

2. More about Subjective Data Analysis
2.1. Outlier Detection

We process our raw subjective data by detecting and re-
moving outlier annotations. First, based on the outlier rejec-
tion method in [S1], a valid subjective score for each image
should be in the range of [μ − nσ, μ + nσ], where μ and
σ denote the mean and standard deviation of the subjective
scores, respectively. Generally, n is set to 2 if the empir-
ical distribution is Gaussian; otherwise, n is set to

√
20.

We use this strategy to check the MOSs and attribute scores
from each participant in each session. If there are more than
eight subjective scores (i.e., 10%) of the overall quality that
are out of the expected range, the subject (in this session) is
considered as an outlier, and all subjective scores are subse-
quently removed.

We also conduct outlier removal based on MOSs of the
five duplicated images that are rated twice in each session.
We compute the difference between these two MOSs for
each duplicated image. If the difference is larger than 20,
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Figure S3. The histogram of MOSs in SPAQ.

the subjective scores for this image are invalid. If there are
over three images with invalid scores from a participant, we
remove all ratings by the participant in this session.

In total, we collect 186, 400 raw human ratings from
2, 330 sessions for all of 11, 125 images, and 18, 646 ratings
are detected as outliers. Figure S3 shows the histogram of
MOSs of the images in SPAQ.

2.2. Reliability of Subjective Data

Consistency across Sub-Groups We calculate the cross-
group consistency using correlations between MOSs from
two sub-groups of participants. Specifically, we randomly
divide the participants into two equal-size sub-groups, and
compute two MOSs for each image in SPAQ from the two
sub-groups. We repeat this random splitting 25 times, and
report the mean SRCC and PLCC results in Table S2, where
we find high cross-group consistency.



Criterion SRCC PLCC
Consistency across sub-groups 0.923 0.930
Consistency across subjects 0.841 0.865

Table S2. Subjective data consistency analysis. Consistency across
sub-groups: correlations between MOSs from two sub-groups of
participants. Consistency across subjects: correlations between
ratings from individual participants and MOSs from all partici-
pants.

Consistency across Subjects We compute the cross-
subject consistency using correlations between ratings from
individual participants and MOSs from all participants. The
mean SRCC and PLCC results are listed in Table S2, from
which we observe that the cross-subject consistency is rea-
sonably high, but not as high as cross-group consistency,
suggesting that the variation between individual subjects is
larger than that between sub-groups of subjects.

3. More about Proposed BIQA Models

3.1. Model Specification

We use ResNet-50 as the backbone for our BIQA mod-
els. Table S3 presents the details of the baseline model
(BL) and variants of deep multi-task learning models (MT-
A, MT-E, and MT-S).

3.2. Multi-Task Loss for MT-S

In this subsection, we derive the multi-task loss function
for both quality regression and scene classification tasks.
First, in Eq (6) of the manuscript, the Laplace distribution
is given by:
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1
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where q̂(i) is the mean given by the network predication,
and σ1 denotes the observation noise. We then compute
the negative log likelihood of a mini-batch containing m
training samples to construct the quality regression loss
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where we drop the constant m log 2. Meanwhile, the log
likelihood for the output of scene classification can be writ-
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where as in [S2] we introduce the assumption that
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(i)
k )
) 1

σ2 with ŝ
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ing the k-th entry of ŝ(i). Therefore, the empirical loss for
scene classification over a mini-batch of m samples is for-
mulated as
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Final, the complete loss can be computed by the joint nega-
tive log likelihood:
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as desired.

3.3. Cross-Database Validation

In order to verify the robustness of the proposed BIQA
model, we evaluate BL in a cross-database setting. We train
the BL model on SPAQ and test it on two synthetic distor-
tion databases (LIVE [30] and TID2013 [25]) and three re-
alistic distortion databases (CID2013 [33], LIVE Challenge
[5], and KonIQ-10k [9]). We show the SRCC and PLCC
results in Table S4, where we find that BL is much eas-
ier to generalize to other databases of realistic distortions,



but does not work well on synthetic databases. This sug-
gests a significant domain gap between synthetic and realis-
tic distortions. Therefore, it is necessary to build a realistic
database of camera pictures such as SPAQ to lay the ground-
work for the next-generation BIQA models for smartphone
photography.

References
[S1] VQEG. Final report from the video quality experts

group on the validation of objective models of video
quality assessment, 2000. 1, 3

[S2] A. Kendall, Geometry and Uncertainty in Deep Learn-
ing for Computer Vision, Ph.D. dissertation, Depart-
ment of Engineering, University of Cambridge, 2017.
4



Layer name BL MT-A MT-E MT-S
Conv1 7× 7, 64, stride 2 7× 7, 64, stride 2

3× 3 MaxPool2d(), stride 2 3× 3 MaxPool2d(), stride 2

Conv2 x

[ ]1× 1 64
3× 3 64 ×3
1× 1 256

[ ]1× 1 64
3× 3 64 ×3
1× 1 256

Conv3 x

[ ]
1× 1 128
3× 3 128 ×4
1× 1 512

[ ]
1× 1 128
3× 3 128 ×4
1× 1 512

Conv4 x

[ ]1× 1 256
3× 3 256 ×6
1× 1 1024

[ ]1× 1 256
3× 3 256 ×6
1× 1 1024

Conv5 x

[ ]1× 1 512
3× 3 512 ×3
1× 1 2048

[ ]1× 1 512
3× 3 512 ×3
1× 1 2048

[ ]1× 1 512
3× 3 512 ×3
1× 1 2048

AdaptiveAvgPool2d() 8-d (EXIF) AdaptiveAvgPool2d()

FC 1-d 6-d 1-d 1-d (Bias) 9-d 1-d(Generic) + Generic

GT MOS
Image

MOS MOS Scene labels MOSattributes
and MOS

Table S3. The network architectures of our BIQA models. We follow the style and convention of ResNet-50 in [8], and the “bottleneck”
building blocks are shown in brackets with the number of blocks stacked. FC denotes fully connected layer. GT denotes ground truth
annotation.

Training SPAQ

Testing Synthetic database Realistic database
LIVE [30] TID2013 [25] CID2013 [33] LIVE Challenge [5] KonIQ-10k [9]

SRCC 0.560 0.397 0.754 0.742 0.707
PLCC 0.608 0.570 0.771 0.773 0.745

Table S4. SRCC and PLCC results of the proposed BL model in a cross-database setting.


