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Appendix
This document provides supplementary material as refer-

enced in the main paper: Sec. A contains additional im-
plementation details for: AVA Action Detection (§A.1),
Charades Action Classification (§A.2), and Kinetics Action
Classification (§A.3). Sec. B contains further results and
ablations on Kinetics-400.

A. Additional Implementation Details
A.1. Details: AVA Action Detection

Detection architecture. We exactly follow the detection
architecture in [3] to allow direct comparison of X3D with
SlowFast networks as a backbone. The detector is similar
to Faster R-CNN [22] with minimal modifications adapted
for video. Since our paper focuses on efficiency, by default,
we do not increase the spatial resolution of res5 by 2× [3].
Region-of-interest (RoI) features [4] are extracted at the
last feature map of res5 by extending a 2D proposal at a
frame into a 3D RoI by replicating it along the temporal axis,
similar as done in previous work [7, 16, 24], followed by
application of frame-wise RoIAlign [8] and temporal global
average pooling. The RoI features are then max-pooled and
fed to a per-class, sigmoid classifier for prediction.

Training. For direct comparison, the training procedure and
hyper-parameters for AVA follow [3] without modification.
The network weights are initialized from the Kinetics models
and we use step-wise learning rate decay, that is reduced
by 10× when validation error saturates. We train for 14k
iterations (68 epochs for ∼211k data), with linear warm-
up [6] for the first 1k iterations and use a weight decay of
10−7, as in [3]. All other hyper-parameters are the same as in
the Kinetics experiments. Ground-truth boxes, and proposals
overlapping with ground-truth boxes by IoU > 0.9, are used
as the samples for training. The inputs are instantiation-
specific clips of size γt×112γs×112γswith time stride γτ .

The region proposal extraction also follows [3] and is
summarized here for completeness. We follow previous
works that use pre-computed proposals [7, 16, 24]. Our re-
gion proposals are computed by an off-the-shelf person de-

tector, i.e., that is not jointly trained with the action detection
models. We adopt a person-detection model trained with
Detectron [5]. It is a Faster R-CNN with a ResNeXt-101-
FPN [18, 29] backbone. It is pre-trained on ImageNet and
the COCO human keypoint images [19]. We fine-tune this
detector on AVA for person (actor) detection. The person
detector produces 93.9 AP@50 on the AVA validation set.
Then, the region proposals for action detection are detected
person boxes with a confidence of > 0.8, which has a recall
of 91.1% and a precision of 90.7% for the person class.

A.2. Details: Charades Action Classification

For Charades, we fine-tune the Kinetics models. All set-
tings are the same as those of Kinetics, except the following.
A per-class sigmoid output is used to account for the mutli-
class nature. We train on a single machine for 24k iterations
using a batch size of 16 and a base learning rate of 0.02 with
10× step-wise decay if the validation error saturates. We use
weight decay of 10-5. We also increase the model temporal
stride by ×2 as this dataset benefits from longer clips. For
inference, we temporally max-pool prediction scores [3].

A.3. Details: Kinetics Action Classification

Training details. We use the initialization in [9]. We adopt
synchronized SGD training on 128 GPUs following the
recipe in [6]. The mini-batch size is 8 clips per GPU (so the
total mini-batch size is 1024). We train with Batch Normal-
ization (BN) [15], and the BN statistics are computed within
each 8 clips, unless noted otherwise. We adopt a half-period
cosine schedule [20] of learning rate decaying: the learning
rate at the n-th iteration is η ·0.5[cos( n

nmax
π)+1], where nmax

is the maximum training iterations and the base learning rate
η is set as 1.6. We also use a linear warm-up strategy [6]
in the first 8k iterations. Unless specified, we train for 256
epochs (60k iterations with a total mini-batch size of 1024,
in ∼240k Kinetics videos).We use momentum of 0.9, weight
decay of 5×10-5 and dropout [10] of 0.5 is used before the
final classifier.

For Kinetics-600, we extend the training epochs (and
schedule) of above by 2×. All other hyper-parameters are
exactly as for Kinetics-400.



Implementation details. Non-Local (NL) blocks [28] are
not used for X3D. For SlowFast results, we use exactly
the same implementation details as in [3]. Specifically, for
SlowFast models involving NL, we initialize them with the
counterparts that are trained without NL, to facilitate conver-
gence. We only use NL on the (fused) Slow features of res4
(instead of res3+res4 [28]). For X3D and EfficientNet3D, we
follow previous work on 2D mobile architectures [11,25,26],
using SE blocks [13] (also found beneficial for efficient
video classification in [30]) and swish non-linearity [21]. To
conserve memory, we use SE with original reduction ratio of
1/16 only in every other residual block after the 3×32 conv;
swish is only used before and after these layers and all other
weight layers are followed by ReLU non-linearity [17]. We
do not employ the “linear-bottleneck” design used in mobile
image networks [11, 23, 25, 26], as we found it to sometimes
cause instability in distributed training.

Expansion details. To expand the model specified in Ta-
ble 1 of the main paper, we set all initial expansion factors,
X0, to one i.e. γt=γs=γw=γb=γd=1; A temporal sam-
pling rate γτ is not defined for the X2D base model as it does
not have multiple frames. The smallest possible common
expansion for this model is defined by increasing the number
of frames from 1 to two; therefore we set the expansion-rate
ĉ to match the cost of increasing the temporal input length of
the model by a factor of two (the smallest possible common
increase in the first expansion step), which roughly doubles
the cost of the model, ĉ = 2.

Then, in every step of our expansion we train a models,
one for expanding each axis, such that its complexity doubles
(ĉ = 2). For the individual axes this roughly1 equals to the
following operations:

• X-Fast: γτ← 0.5γτ , reduces the sampling stride to
double frame-rate while sampling the same input dura-
tion, this doubles the temporal size γt←2γt.

• X-Temporal: Increases frame-rate by γτ← 0.75γτ and
input duration to double the input size γt←2γt (i.e.
1.5× higher frame-rate and 1.5×longer input duration).

• X-Spatial: Expands the spatial resolution proportionally
γs←

√
2γs.

• X-Depth: Expands the depth of the network by around
γd← 2.2γd.

• X-Width: Expands the global width for all layers by
γw← 2γw.

• X-Bottleneck: Expands the bottleneck width by roughly
γb← 2.25γb.

1The exact expansion factors slightly vary across steps to match the
complexity increase, ĉ (which is observable in Fig. 2 of the main paper).

The exact scaling factors slightly differ from one expan-
sion step to the other due to rounding effects in network
geometry (layers stride, activation size etc.).

Since the stepwise expansion also allows to elegantly in-
tegrate regularization (which is typically increased for larger
models), we perform a regularization expansion if the train-
ing error of the previous expansion step starts to deviate
from the validation error. Specifically, we start the expan-
sion with double the batch-size and half learning schedule
than described above, then the BN statistics are computed
within each 16 clips which lowers regularization and im-
proves performance on small models. The batch-size is then
decreased by 2× at the 8th step of expansion which increases
generalization. We perform another regularization expansion
at the 11th step by using drop-connect with rate 0.1 [14].

B. Additional Results
Fig. A.1 shows a series of extra plots on Kinetics-400,

analyzed next (this extends Sec. 4 of the main paper):

Inference cost. Here we aim to provide further ablations
for the effect of using fewer testing clips for efficient video-
level inference. In Fig. A.1 we show the trade-off for the full
inference of a video, when varying the number of temporal
clips used. The vertical axis shows the top-1 accuracy on
K400-val and the horizontal axis the overall inference cost
in FLOPs for different models.

First, for comparison, the plot on top-left is the same as
the one shown in Fig. 3 of the main paper. The plot on top-
right shows this same plot with a logarithmic scale applied
to the FLOPs axis. Using this scaling it is clearer to observe
that smaller models (X3D-S and X3D-M) can provide up
to 20× reduction in terms of multiply-add operations used
during inference.

For example, 3-clip X3D-S produces 71.4% top-1 at 5.9
GFLOPs, whereas 10-clip CSN-50 [27] produces 70.8 top-1
at 119 GFLOPs (20.2× higher cost), or 10-clip X3D-S 72.9%
top-1 at 19.6 GFLOPs, and 10-clip CSN-101 [27] 71.8%
top-1 at 159 GFLOPs (8.1× higher cost).

The lower two plots in Fig. A.1 show the identical results
on the test set of Kinetics-400 (which has been publicly
released with Kinetics-600 [2]). Note that the test set is more
challenging which leads to overall lower accuracy for all
approaches [1]. We observe consistent results on the test set,
illustrating good generalization of the models.

Mobile components. Finally, we ablate the effect of
mobile components employed in X3D and EfficientNet3D.
Since the components can have different effects of models
from the small and large computation regime, we ablate the
effects on a small (X3D-S) and a large model (X3D-XL).

First, we ablate channel-wise separable convolution [12],
a key component in mobile ConvNets. We ablate two ver-
sions: (i) A version that reduces the bottleneck ratio (γb)
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Figure A.1. Accuracy/complexity trade-off on K400-val (top) & test (bottom) for varying # of inference clips per video. The top-1
accuracy (vertical axis) is obtained by K-Center clip testing where the number of temporal clips K ∈ {1, 3, 5, 7, 10} is shown in each curve.
The horizontal axis shows the full inference cost per video. The left-sided plots shows a linear and the right-sided plot a logarithmic scale.

accordingly, such that the overall architecture preserves the
multiple-add operations (FLOPs), and (ii) a version that
keeps the originally, expanded bottleneck ratio.

Table A.1 shows the results. For case (i) we see that
performance drops significantly by 4% top-1 accuracy for
X3D-S and by 2.4% for X3D-XL. For case (ii), we see that
the performance of the baselines increases by 0.3% and
0.8% top-1 accuracy for X3D-S and X3D-XL, respectively.
This shows that separable convolution is important for small-
computation budgets, however, for best-performance a non-
separable convolution can provide gains (at high cost).

Second, we ablate swish non-linearities [21] (that are only
implemented before and after the “bottleneck” convolution,
to conserve memory). We observe that removing swish has
a smaller performance decrease of 0.9% for X3D-S and
0.4% for X3D-XL, and therefore could be changed to ReLU
(which can be implemented in-place) if memory is priority.

Third, we ablate SE blocks [13] (that are only used in

every other residual block, to conserve memory). We ob-
serve that removing SE has a larger effect on performance,
decreasing accuracy by 1.6% for X3D-S and 1.3% for for
X3D-XL. These are similar effects on performance as have
been shown Non-local (NL) attention blocks [28], and are
also in line with [30], where SE attention blocks have been
found beneficial for efficient video classification.
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